
Qualified Types for MLF

Daan Leijen Andres L̈oh

Institute of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Draft: Revision: 166

{daan,andres}@cs.uu.nl

Abstract

MLF is a type system that extends a functional language with impredicative rank-n polymorphism. Type
inference remains possible and only in some clearly defined situations, a local type annotation is required.
Qualified types are a general concept that can accommodate a wide range of type systems extension, for
example, type classes in Haskell. We show how the theory of qualified types can be used seamlessly with the
higher-ranked impredicative polymorphism of MLF, and give a solution to the non-trivial problem of evidence
translation in the presence of impredicative datatypes.

1. Introduction

MLF [6] is a type system that extends a functional language (in the style of ML [8] or Haskell [9]) with a form
of impredicative rank-n polymorphism. Type inference in the extended system remains possible, but in some
clearly defined situations, code that makes use of polymorphic arguments must be locally annotated with types.

Applications that require rank-n polymorphism are surprisingly ubiquitous in advanced functional program-
ming. Shan [11] as well as Peyton Jones and Shields [10] present plenty of convincing examples, such as
dynamic types, datatype invariants, and generic (polytypic) functions. Current Haskell implementations are
therefore already equipped with a type system that supports a limited form of rank-n polymorphism.

The excellent tutorial paper by Peyton Jones and Shields [10] describes the ideas behind the Haskell
implementation in great detail and explains many of the design decisions made.

A significant limitation of the Haskell implementation with respect to the MLF system is that the former is
predicative: a quantified variable can only range over monomorphic types, whereas in MLF, a type variable can
be instantiated to a polymorphic type again. Impredicativity is essential for abstraction over polymorphic values
and has a number of advantages for the programmer that make MLF more flexible and more intuitive to use.

However, there are two reasons that currently prevent a wider adoption of the more general MLF approach:

• In MLF, quantifiers have bounds that are all collected in a prefix at the beginning of the type. This requires
the reader to perform an on-the-fly substitution, which makes it much harder to understand a complicated
type. Also, it just looks plainly unfamiliar.

• Functional programming languages used in practice already possess other extensions to the type system be-
sides rank-n polymorphism. Many of these type system extensions, such as type classes, implicit parameters,
or records, are based on the theory of qualified types [3]. Due to impredicativity, it is unclear how MLF can
work in conjunction with such extensions.

We have the firm belief that both doubts just raised can be eliminated, and we make the following contributions:

• In Section 2.6 we present a simple convention that can be used to write MLF types in a more intuitive
way. The additional notational complexity that bounded quantification introduces is only imposed on the
programmer when it plays a crucial role.

1 2005/4/25

• In Section 5 we introduce a variant of the MLF type inference algorithm which performs type-directed
evidence translation to System F. This is the key contribution of this paper, because it allows the addition of
qualified types to MLF in a way that it can be used efficiently in an actual implementation.

With the addition of qualified types, we believe that this paper is a substantial step forward to making MLF fit
for use in practical programming languages.

The paper starts by introducing the two main topics that we want to connect: The MLF type system
is explained by example in Section 2, comparing it to a plain Hindley-Milner type system without rank-n
polymorphism and the system used in current Haskell implementations. Section 3 introduces qualified types,
giving examples of a number of different applications, including the Haskell type class system. We also show
that the sum of the two features, rank-n and qualified types, is greater than its parts, by pointing out applications
that are only possible with impredicative qualified types.

Interestingly, the difficult part in combining the features is not to extend the MLF type system with qualified
types, but how to implement the resulting system. Qualified types are usually implemented using evidence
translation, explained in Section 4. We demonstrate why a naı̈ve extension of the standard translation scheme
fails, and we present the core ideas to overcome this problem.

In Section 5, we present a variant of the MLF type inference algorithm that is augmented with a type-directed
evidence translation to System F. Adding actual qualified types to the system is then easy and explained in
Section 6. In Section 7, we conclude and discuss future work.

2. A tour of MLF

In this section, we introduce first-class polymorphism and analyze the advantages that MLF offers over Hindley-
Milner and other implementations of higher ranked types.

2.1 Higher-ranked types

The Hindley-Milner type system [2] stands at the basis of almost all polymorphic programming language type
systems. An important property of the Hindley-Milner type system is that there exists a type inference algorithm
that automatically infers most general types for expressions, and there is no need for extra type annotations. At
the same time, the type system is sound, where the execution of a well-typed program can not “go wrong”. The
combination of these features, together with a straightforward implementation, makes the Hindley-Milner type
system well-suited for practical use.

However, the Hindley-Milner type system has a significant limitation: polymorphic values are not first-class.
In practice this means that only values that are bound by alet construct can have a polymorphic type. It is not
possible for the argument of a function to be used with a polymorphic type. Here is an example of a function
that takes a polymorphic argument1:

f choose = (choose True False, choose ’a’ ’b’)

The functionf takes a functionchoose and calls it on two booleans and two characters in the body of the
function. Neither Haskell, nor ML, would accept this definition, because in the Hindley-Milner type system,
lambda-bound variables such aschoose can only have monomorphic types, which is equivalent to the property
that universal quantifiers can only appear at the outermost level of a type.

In contrast, explicitly typed languages such as System F allow universal quantifiers to appear deep within a
type. For example, if we know thatchoose has the polymorphic type∀α. α → α → α, then the above definition
makes sense, andf can be given the following type:

(∀α. α → α → α) → (Bool ,Char)

1 Note that we adopt a Haskell-like notation throughout this paper, even though we are talking about a type system that has been
introduced as an extension of ML.

2 2005/4/25

This is a rank-2 type, as it contains quantifiers to the left of the function arrow. The Haskell implementations
GHC and Hugs support higher-rank polymorphism such as it occurs in the definition off above. If f is
equipped with a type signature, the compiler accepts the definition. However, even though higher-ranked, the
implementations are still limited due to a second restriction of Hindley-Milner: quantified variables can only be
instantiated with a monomorphic type. Systems with this restriction are calledpredicative.

The MLF type system is an extension of Hindley-Milner that fully supports first-class polymorphism:
universal quantifiers can appear anywhere in a type, and quantified variables can be instantiated with a
polymorphic type. Because of the last feature, MLF is animpredicativetype system.

We believe that impredicativity is very important for abstraction and we discuss its advantages in more detail
in Section 2.4. First, we take a closer look at the difference between predicative and impredicative instantiation.
Take for example the following two functions:

choose :: ∀α. α → α → α

id :: ∀β. β → β

Let us consider the applicationchoose id . In a predicative system, the type ofid has to be instantiated to a
freshγ, because as an argument tochoose, it cannot have a polymorphic type. Consequently, we get:

choose id :: ∀γ. (γ → γ) → (γ → γ)

This is the type derived by GHC for example. Impredicatively, we have a choice. We can do the same as above,
but we can also instantiateα to the polymorphic type∀β. β → β:

choose id :: (∀β. β → β) → (∀β. β → β)

However, thechoose id example immediately reveals a problem with impredicative polymorphism: neither of
the two types above is an instance of the other. Indeed, a naı̈ve implementation of impredicative polymorphism
does not have principal types.

2.2 Principal types

A type system is said to have principal types if each expression can be assigned a “best possible type”, of which
all other types it could have are instances. Principal types are necessary for type inference to work efficiently,
because it allows that optimal types are inferred by looking only at a part of the program, rather than having to
perform a global analysis.

The achievement of MLF is that it restores the principal types property even in the presence of impredicativity.
It does so by extending the type language, so that we can assign a type tochoose id of which both types above
are instances. As a consequence, MLF does support efficient type inference. The principal type forchoose id
in MLF is

choose id :: ∀(α ≥ ∀β. β → β). α → α

The quantification onα gets abound, meaning that it can be instantiated only with types that are an instance of
∀β. β → β. Instantiatingα with γ → γ for a freshγ, or with ∀β. β → β, leads to the two types ofchoose id
given above.

2.3 Type annotations

Type inference in MLF does never invent polymorphism: whenever a lambda-bound argument is used poly-
morphically, a type annotation is required. The same holds for the Haskell implementation of higher-ranked
polymorphism.

All these systems, however, share the property that type annotations are only required for programs which ac-
tually make use of higher-ranked polymorphism. All other programs continue to work without type annotations.

3 2005/4/25

Therefore, switching the underlying type system of an ML-like language to MLF will not break any existing
programs.

2.4 Advantages of MLF

Until now, we have seen that we can handle impredicative types by complicating the type language. We will
argue in Section 2.6 that this complication is not very serious. But first, we want to show what wegainby having
the MLF system rather than, for instance, the Haskell implementation of higher-ranked types.

We will present two significant examples.

Function application is not a special construct Consider the function

($) :: ∀α β. (α → β) → α → β

($) = id

defined in the Haskell prelude. This function replaces function application, such that we can writef $ x instead
of f x to denote the application off to x . Fixity rules in Haskell specify that$ is right-associative and binds
very weakly, whereas ordinary function application is left-associative and binds very strongly. The operator($)
is often used to remove the need for parentheses that would otherwise extend over large portions of code.

In the context of higher-ranked types, however,($) in Haskell is strictly weaker than normal function
application, because the quantified variablesα andβ in the type of($) cannot be instantiated to polymorphic
types. We show this with the help of well-known higher-ranked functionrunST , which is part of the Haskell
libraries:

runST :: ∀α. (∀γ.ST γ α) → α

This function was one of the first motivations to consider higher-ranked types in Haskell. The functionrunST
is used to evaluate a stateful computation of typeST γ α, yielding a value of typeα. The computation must be
independent of the parameterγ, which ensures that the state does not escape from the computation and is not
used in other stateful computations. Values of typeST γ α are often complex and extend over multiple lines of
code, therefore it would be tempting to write

runST $ very complicated computation

This, however, is rejected by all Haskell implementations. However, the expression

runST (very complicated computation)

is accepted. With the impredicative MLF type system, both versions work without type annotations.
This example stands for a whole class of applications of impredicativity which leads to less type annotations

required, or actually more programs becoming admissible. For instance,

id runST (very complicated computation)

is not possible to write in Haskell either for much the same reason (id cannot be instantiated torunST ’s
polymorphic type). In effect, the usual abstraction mechanism of polymorphism no longer works for higher-
ranked types in Haskell. This means that the programmer needs to define specific versions of general functions
like id and($) for each kind of higher-rank type occurring in the program.

The special role of function application is not merely an inconvenience to the programmer, it makes it also
more difficult to prove theorems, perform program derivations, or any kind of source-to-source transformations.
Many common transformations such as

id x ≡ x

4 2005/4/25

are suddenly subject to side conditions which require looking at the type of arguments that are involved! With
MLF, neither programmers nor tool developers need to consider rank-n types as something special, and the
usual abstraction mechanism remain valid.

Data structures over polymorphic typesIn a predicative system, not only function application is special in
being able to deal with polymorphic types, also the function space type constructor(→) takes a special role: it
is the only type constructor that can be parameterized over polymorphic types.

In an impredicative system, any parameterized datatype can be instantiated to polymorphic types just as it can
be instantiated to monomorphic types. With MLF, we can build lists, tuples, trees, or complex abstract datatypes
such as Haskell’sIO monad which are parametrized over a polymorphic type.

Recall the rank-2 polymorphic functionrunST :

runST :: ∀α. (∀γ.ST γ α) → α

In Haskell, it is not possible to place this function in a list or a pair – both of the expressions

[runST]
(runST , ’a’)

are rejected by the Haskell type checker, and this situation cannot be improved by providing type signatures.
The reason is that the types would have to be

[∀α. (∀γ.ST γ α) → α]
(∀α. (∀γ.ST γ α) → α,Char)

respectively, and these are just not legal in a predicative system. With MLF as type system, both expressions are
accepted.

It should be mentioned that Haskell allows to place polymorphic values into data structures by hiding the
polymorphism within a datatype. One can define

newtype RunSTType = Pack (∀α. (∀γ.ST γ α) → α)
unPack (Pack x) = x

and then usePack runST to store the value into a data structure, andunPack after we extract it from the data
structure.

The disadvantage of this approach is immediately obvious: whilenewtype can be implemented efficiently
and causes no runtime overhead, it is very tedious to use this technique as a programmer. Separate datatypes to
pack polymorphic values are needed for each polymorphic type.

We believe that the current situation, while theoretically no less expressive, in practice prevents the pro-
grammer from adopting a solution which makes use of polymorphic types. The MLF type system encourages
programmers to see polymorphic values as first-class values in every respect, that need not be avoided and
require no special treatment.

2.5 MLF formally

After having looked at the features of the MLF system, let us now introduce the MLF type language more
formally. The MLF type language distinguishes monomorphic types (monotypes) from polymorphic types
(polytypes). The syntax of monotypes is defined as:

τ ::= g τ1 . . τn | α

In other words, a monotype is either an applied constructorg , or a type variable. We assume that the binary
function space constructor(→) is among the possible constructors.

A polytype is either bottom (⊥), or a monotype quantified with a (possibly empty)prefixQ :

5 2005/4/25

σ ::=⊥ | ∀Q . τ

A Prefix is a list of constraints that associate a type variable with a polytype. Each constraint is of the form:

(α � σ)

Here,� stands either for=, in which case the constraint is called arigid bound, or it stands for>, and then we
speak of aflexible bound.

A bound(α � σ) quantifies the type variableα in the rest of the prefix and the qualified type. The idea is that
a rigid bound can only be instantiated withexactlythe type given, whereas a flexible bound can be instantiated
with any instanceof the given type.

We will not describe the instance relation precisely, but will focus on some important properties of instanti-
ation. First of all, the instance relation is transitive and reflexive, where every type is an instance of⊥ (written
⊥ v σ), thus if bottom is used in a flexible bound, this represents ordinary unbounded quantification.

For example, the identity function has the MLF type

∀(α ≥ ⊥). α

We abbreviate unbounded quantification and write

∀α. α

instead.
We have seen a nontrivial MLF type forchoose id ,

∀(α ≥ ∀β. β → β). α → α

whereα can be instantiated with both∀β. β → β itself andγ → γ for a fresh variableγ. Formally,

∀(α ≥ ∀β. β → β). α → α v ∀(α = ∀β. β → β). α → α

∀(α ≥ ∀β. β → β). α → α v ∀γ. γ → γ → (γ → γ)

Bounded quantification allows us to express flexibility while at the same time maintaining a relation between
different parts of the type that are represented by the same variable.

Rigid bounds occur whenever a function requires a polymorphic argument, such asrunST , which has MLF
type

∀α (β = ∀γ.ST γ α). β → α

Here, we can not instantiate the type as a truly polymorphic type is required. Since this restricts instantiation,
we can turn flexible bounds into rigid bounds (but not the other way around), in other words:∀(α ≥ σα). σ v
∀(α = σα). σ.

Besides the instance relation on types there is also an equivalence relation on polytypes, written≡. For
instance, the type

∀γ. γ → γ → (γ → γ)

is equivalent to the more complicated

∀γ (β = γ → γ). β → β

Equivalence preserves the free type variables in a type. The equivalence relation can be used to compute a
normal formof an MLF type. The algorithm to compute the normal form is shown in Figure 1. The labels on the
boundsv can be ignored for now – they will only become relevant in Section 5 when these are used for the type
directed translation. The normal form algorithm basically simplifiestrivial bounds away. From the definition we

6 2005/4/25

nf(τ) .= τ

nf(⊥) .= ⊥
nf(∀(α �v σα). σ) .= nf(σ) if α /∈ ftv(σ)
nf(∀(α �v σα). σ) .= nf(σα) if nf(σ) = α

nf(∀(α �v σα). σ) .= nf(σ) [α 7→ τ] if nf(σα) = τ

nf(∀(α �v σα). σ) .= ∀(α �v nf(σα)). nf(σ)

Figure 1. Normal form of MLF types

can see that there are three forms of trivial bounds: the quantified variable is bound by a monotype, the variable
does not occur in the body of the type, or if the body of the type is itself a variable.

THEOREM 1. The normal form of a type is always equivalent to the type itself, i.e.,

nf(σ) ≡ σ

For a more thorough explanation of the MLF theory including the exact definitions of instantiation and
equivalence, the reader is referred to the MLF article [6] or thesis [5].

2.6 Presentation of MLF types

MLF types put us in a dilemma: they are nice to work with from a theoretician’s or an implementor’s point
of view, but they are awkward to read for a programmer. The reason for both is that MLF types, although
higher-ranked, collect all the qualifiers in a prefix, at the beginning of the type.

In some cases the normal form computation can help to simplify the presentation of a type: if a quantified
variable is bounded by a monotype, if a variable does not occur in the body of the type, or if the body of the
type is itself a variable. But even the normal form can still be unexpectedly verbose. For instance, the type of
runST in MLF is

∀α (β = ∀γ.ST γ α). β → α

and this type is in normal form. Yet, the originally given type

∀α. (∀γ.ST γ α) → α

would probably be considered to be much more readable by most programmers. We therefore propose to adopt
a simple heuristic when presenting types to users in MLF-based systems:

• a flexible constraint(α ≥ σ) is inlined whenα appears only inpositivepositions, i.e., to the right of a
function arrow,

• a rigid constraint(α = σ) is inlined whenα appears only innegativepositions, i.e., to the left of a function
arrow,

• other type constructors do not influence the sign of the position.

This heuristic is loss-free: the original MLF type can easily be recovered from the simplified type.
As an example, consider the following explicit MLF type

∀(β = ∀α. α → α) (γ ≥ ∀α. α → α). β → γ

can be presented according to this heuristic as:

[∀α. α → α] → [∀α. α → α]

7 2005/4/25

The heuristic is used in the experimental Morrow compiler [7], which presents the above type and the type
of runST in their simpler form. Experience to the present day shows that it makes MLF very easy to work
with, because the bounded quantifications that remain are the ones where the expressed sharing actually plays a
crucial role in the type. Most simple functions, however, get the same types as they would in ML or Haskell. In
the remainder of this article we will make use of this convention.

3. Qualified types

Jones introduced the theory of qualified types [3] to generally describe a wide range of type system extensions,
ranging from ad-hoc overloading to record operations. The main reason to consider qualified types in conjunc-
tion with MLF is that it gives us a general framework to easily extend MLF with features that are essential in
practice. For example, the MLF type system is simply not feasible for languages such as Haskell if it does not
support qualified types properly, because of the prominent position of type classes in the Haskell language.

However, qualified types have several applications beyond type classes, and the fact that MLF proves to be
compatible with qualified types says that MLF is a good underlying system for all languages that support any of
these features. For instance, MLF the basis of the type system for the experimental Morrow language [7], which
deals with records and employs MLF in the expectation that it can use an efficient type-directed translation
where predicates correspond to runtime offsets [1].

Furthermore, we show that adding qualified types to MLF is not just useful in its own right but can also profit
from impredicative types itself. This can lead to new applications of qualified types that are not possible with
current predicative type systems.

3.1 Predicates

Qualified types extend the type language withpredicates. A qualified type∀π. σ denotes those instances ofσ that
satisfy the predicateπ. For consistency with MLF we write predicates in the same way as bounds (instead of the
more usualπ ⇒ σ). The theory of qualified types makes just few assumptions of the language of predicatesπ,
and there are many interesting instances. We discuss three of those extensions in this paper. One of the most
widely known is the type class system in Haskell.

3.2 Type classes

A type class in Haskell denotes a family of types (instances) on which a number of values (themember functions)
are defined. Each predicateC τ is an assertion thatτ is an instance of classC . For example, the classEq denotes
those types for which equality(= =) is defined:

(= =) :: ∀α (Eq α). α → α → Bool

The predicateEq α indicates that equality is not parametrically polymorphic, but only works for those types that
are an instance of theEq class. In other words, type classes implement ad-hoc overloading where functions can
behave differently for different types. This normally requires some sort of global analysis. By adding predicates
to the types, this analysis is provided automatically by the theory of qualified types: constraints are specified
locally in the predicates of a type, and these predicates are propagated through expressions by the type system.
Take for instance the following expression:

(λα β. if (α = = β) then "yes" else "no")
:: ∀α (Eq α). α → α → String

The equality predicate of(= =) is automatically propagated to the type of the entire expression. Operationally, we
can interpret predicates as extra runtime parameters that give the runtime evidence that the predicate holds. For
anEq α predicate, this is would for example be a dictionary that contains the implementation of the equality
function for typeα.

8 2005/4/25

It is not advisable to allow type schemes in type class predicates themselves as instance resolution would
become much more complicated, or even undecidable. However, the combination of MLF with type classes can
still lead to new uses of overloading. This is mostly because polymorphic functions become more useful. Take
for example a plain MLF list that contains the identity function:

xs :: [∀α. α → α]
xs = [id]

This list is not very exciting as there simply exist few functions that have such a polymorphic type (modulo
undefined values, just the identity function). With a type class, we can assert that we can apply certain operations
to a polymorphic type. Here is a more interesting example with a list of functions that work on any numeric
type:

let precise :: (∀α (Num α). α → α) → Bool
precise f = (f 1 6= round (f 0.9))

in map precise [id , (+1),negate, (∗2)]

This is also an example of how MLF scales with respect to predicative systems: we can reuse themap abstraction
on lists with polymorphic components without having to resort to packing and unpacking (cf. Section 2.4).

3.3 Implicit parameters

Another instance of qualified types are implicit parameters. A predicate?x :: τ asserts that the term can access
an implicit argument?x with typeτ . This reduces the burden on a programmer to pass this argument explicitly.
A typical application for implicit parameters are options that can be used inside deeply nested functions without
passing them explicitly through each call site. For example, a pretty printer may use the width of the screen
deep inside the render function:

pretty :: ∀(?width :: Int).Doc → String
pretty doc = . . . if (i < ?width) . . .

The type signature ofpretty asserts that it expects an implicit argumentwidth of type Int , and a normal
argument of typeDoc. Implicit arguments are bound using thewith keyword:

(pretty (text "hi") with ?width = 78) :: String

An interesting advantage with respect to type classes is that we can bind an implicit argument of a certain type
to different values, while type classes only allow a single instance per type.

Of course, we may want to bind implicit arguments to polymorphic values. For example, we could pass
monad operations as an implicit argument instead of using overloading, as is standard in Haskell. The function
twice applies an implicitunit parameter to its argument:

twice :: ∀m (?unit :: ∀β. β → m β) α. α → m (m α)
twice x =?unit (?unit x)

Note that we use?unit at two different types and that the type of?unit must be polymorphic. Alas, the
functiontwice will not type check in a predicative type system as the type of the implicit parameter predicate is
instantiated to a type scheme. Here we see that the combination of an impredicative type system like MLF and
qualified types can lead to new applications of qualified types themselves. In the next section, we give another
example of this in the context of records.

9 2005/4/25

3.4 Records

Record operations can also be elegantly typed with qualified types. For example, thehaspredicate(l :: τ ∈ r)
asserts that a recordr contains a particular fieldl of typeτ . Using this predicate, we can give a type signature
for record selection:

(.l) :: ∀α r (l :: α ∈ r). r → α

The qualified type allows us to write functions that work for any record containing a particular field. For
example, the functionlen works for any record containing anx andy field of typeFloat .

len :: ∀r (x :: Float ∈ r) (y :: Float ∈ r). r → Float
len r = sqrt (r .x ∗ r .x + r .y ∗ r .y)

Polymorphic predicates arise naturally with records. For example, the type signature for monadsm contains
two polymorphic fields:

type Monad m =
{unit :: ∀α. α → m α

, bind :: ∀α β.m α → (α → m β) → m β}

We can now define the functiontwice with an explicit monad record as its argument, which applies theunit
field twice on its second argument:

twice :: ∀m (Monad m).Monad m → (∀α. α → m (m α))
twice r x = r .unit (r .unit x)

As before,twice uses theunit field at two different types. The selection ofunit on r gives rise to the
predicateunit :: ∀α. α → m α ∈ Monad m. This predicate obviously holds, but it is just not allowed in
a predicative type system: the field type of thehaspredicate is instantiated here to a type scheme, and thus
requires impredicative predicates. Record systems based onlackspredicates [1] suffer from the same problem
as the record type in the predicate is instantiated with a record containing type schemes.

3.5 Qualified types and MLF

Since MLF is already based on bounded quantification, it is relatively easy to extend the theory of MLF with
qualified types. First of all, we allow predicates to occur together with the bounds in a prefix. Besides extending
the equivalence relation we just need to add two new instance rules for predicates:

(Q) σ v ∀π. σ
Q `̀ π

(Q) ∀π. σ v σ

The first rule states that we make a type less polymorphic by adding a qualifier. The second rule goes in the other
direction: if a predicate is entailed by the context, we can leave it out. Note that we generalize the entailment
relation of the theory of qualified types to work under a prefixQ instead of a set of predicates.

4. Evidence translation

Qualified types are usually implemented using a technique calledevidence translation. During evidence trans-
lation, implicit information represented by the predicates is turned into explicit function arguments. The com-
piler automatically abstracts from and provides evidence where necessary. In Section 4.1, we show how to use
evidence translation for different sorts of qualified types. In Section 4.2, we discuss why a naı̈ve evidence trans-
lation for MLF fails. We then describe how to overcome this problem in Section 4.3. This section contains the
core idea of our translation, which is made precise in Section 5.

10 2005/4/25

xs∗1 = []∗

xs∗2 = Λγ. λ(v2 :: (∀α β · α → β → α) → γ). v2 const∗ : xs∗1 γ

xs∗3 = Λγ. λ(v3 :: (∀α (Ord α) · α → α → α) → γ). v3 min∗ : xs∗2 γ (λx . v3 (Λα. λordα. x α α))
xs∗4 = (<)∗ Bool ordBool : xs∗3 γ (λx . x Bool ordBool)

Figure 2. Idea of the evidence translation for MLF with qualified types

4.1 Examples of evidence translation

All three of the applications of qualified types discussed in the previous section can be translated in this fashion.
With type classes, the class constraints are turned intodictionary arguments. Dictionaries are records

containing all the methods of a class. For instance, a dictionary forEq Int contains the equality and unequality
functions forInt , because theEq class in Haskell has precisely these two methods.

Whenever a let-defined value is overloaded, i.e., has a class constraint, its translation expects an additional
argument, namely the dictionary. And whenever an overloaded function is called, the compiler supplies the
appropriate dictionary argument.

For implicit parameters, the situation is simpler than for type classes, as the evidence consists of only a single
value, the implicit parameter itself.

When dealing with records, the evidence of ahasconstraint of the form(l :: τ ∈ r) can be the offset of
label l in recordr .

In the following, we will investigate how we can perform evidence translation in a system based on MLF.

4.2 Evidence in MLF

When adding qualified types to MLF, it is relatively straightforward to extend the type rules in order to deal
with predicates. However, higher rank and impredicativity makes it non-trivial to perform evidence translation.

Look at the following four lists:

xs1 = [] :: ∀α. [α]
xs2 = const : xs1 :: [∀α β. α → β → α] -- const :: ∀α β. α → β → α

xs3 = min : xs2 :: [∀α (Ord α). α → α → α] -- min :: ∀α (Ord α). α → α → α

xs4 = (<) : xs3 :: [Bool → Bool → Bool] -- (<) :: ∀α (Ord α). α → α → Bool

Each of the lists is obtained from the previous one by adding one additional element in the front, using the cons
operation(:). With each of the additions, the type of the list changes.

All the lists contain elements that are polymorphic. The types are thus different from the types that Haskell
would assign. In fact, the Haskell types of the four lists would be

xs1 :: ∀α. [α]
xs2 :: ∀α β. [α → β → α]
xs3 :: ∀α (Ord α). [α → α → α]
xs4 :: [Bool → Bool → Bool]

all instances of the corresponding MLF types. However, the Haskell types ofx2 andx3 are strictly less general
than their MLF counterparts. With the MLF types, we can extract elements from the lists and use them
polymorphically; with the Haskell types, we cannot. Consider a function

let f ys = (head ys 2 3, head ys ’a’ ’b’) in f xs2

as an example of a function which could not be typed (be it annotated or not) in Haskell, because it really
requires the more general impredicative MLF type ofxs2.

11 2005/4/25

The evidence translation of each of the lists in Haskell is easy, because evidence is only passed on the outside
of a let-bound term. We can represent the lists at runtime as follows:

xs∗1 = []∗

xs∗2 = Λα β. const∗ α β : xs∗1 (α → β → α)
xs∗3 = Λα. λordα.min∗ α ordα : xs∗2 α α

xs∗4 = (<)∗ Bool ordBool : xs∗3 Bool ordBool

Here,x ∗ denotes the runtime term corresponding to the source termx . We are using System F as the runtime
language in this paper, because it is sufficiently powerful to express the programs we are interested in, and it
is fully typed; it is thus easy to see that the evidence translation produces well-typed terms. To retain clarity,
however, we have omitted the type arguments of the(:) calls as well as the annotations for the dictionary
arguments, because they are uninteresting to the example at hand.

This runtime representation is, however, not adequate if we want to use the MLF types above, because in
order to extract a value from such a list, we mustfirst provide evidence fixing the type and the dictionary. This
way,xs2 cannot be used in functionf above.

What we want is a representation of the lists where each element accepts the evidence, “within” the list. For
instance,

xs∗2 = [const∗]
xs∗3 = [Λα. λordα.min∗ α ordα,Λα. λordα. const∗ α α]

In xs3, both elements now accept evidence forOrd α, but onlymin makes use of it. All list elements must have
the same runtime representation, because they are of the same type.

But xs3 = = min : xs2, so there must be a way to constructxs∗3 from xs∗2! Similarly, we have to constructxs∗4,
which as a monomorphic list should still have the same representation as given above, fromxs∗3. In this simple
situation, we could map overxs2, adding unused abstractions overordα, and overxs3, providing evidence for
Ord α by supplying theordBool dictionary. But in the general case, very complicated traversals of runtime
values might be required, that are both difficult to get correct and inefficient to perform. Interestingly, Peyton
Jones and Shields have identified this problem in their discussion of design decisions, and argue that the
necessity of such traversals makes impredicative datatypes infeasible [10, Section 7.3].

4.3 Evidence translation using transformation functions

We are now going to present a variation of the standard evidence translation that overcomes the problem of
traversing data structures in complicated ways at runtime. The idea is to build the necessary flexibility into
the runtime representation from the beginning. The core idea of our evidence translation for MLF is that
polymorphic values are always applied to a transformation function over which we can abstract.

If we later learn more about the polymorphic type, we can supply a suitable transformation function. If
we learn enough about a value that it becomes monomorphic, we can supply a transformation function which
removes all polymorphism. Often, however, we gain only partial information about a polymorphic type, such
that two quantified variables must be the same. In such a case we supply a transformation function which applies
the knowledge gained and subsequently calls a new transformation function. In effect, we thus substitute one
transformation with a new one, more specific than the first.

Applying this idea, the runtime representations of the four lists become as shown in Figure 2. Again, we
have omitted irrelevant annotations for(:) and dictionary arguments. To understand these representations, it is
useful to look at the real MLF types of the lists, with the presentation convention that we defined in Section 2.5
stripped:

xs1 :: ∀(α ≥ ⊥). [α]
xs2 :: ∀(γ ≥ ∀α β. α → β → α). [γ]

12 2005/4/25

τ∗
.= τ

⊥∗ .= ∀α · α
(∀(α �v σα). σ)∗ .= σ∗ if α /∈ ftv(σ)
(∀(α �v σα). σ)∗ .= σ∗α if nf(σ) = α

(∀(α �v σα). σ)∗ .= σ∗ [α 7→ τ] if nf(σα) = τ

(∀(α �v ⊥). σ)∗ .= ∀α · σ∗
(∀(α �v σα). σ)∗ .= ∀α · (σ∗α → α) → σ∗

Figure 3. Translation of types

xs3 :: ∀(γ ≥ ∀α (Num α). α → α → α). [γ]
xs4 :: [Bool → Bool → Bool]

A non-trivial flexible bound(γ ≥ σ) is at runtime represented by an additional parameter of typetr(σ) → γ,
wheretr(σ) is the runtime representation ofσ. This parameter can be used to add, remove, or modify evidence
deep down in the value, as is required by the MLF type system. In particular, fromxs2 to xs3, we transformxs2

to accept evidence forOrd α which is ignored. And fromxs3 to xs4 we pass evidence forOrd Bool to xs3.
These two steps correspond to the instance rules that we have given for qualified types in Section 3.5. Note that
the listxs4 is no longer polymorphic, and does thus not expect any further transformation function.

In this simple example, the passing of transformation functions essentially amounts to mapping over the
list multiple times, but in the general situation, we can apply exactly the same technique to perform complex
transformations at low cost.

Note that we are actually only interpreting the concept of evidence translation in a more rigorous way. The
additional transformation functions that are passed around are evidence on their own: evidence for the fact that
quantified types indeed respect their bounds!

The actual translation that we introduce in the following section passes a few more arguments for technical
reasons, which will, however, all be instantiated to identity functions. A clever compiler can easily optimize
the generated expressions statically to pass evidence and evidence transformers only where they are actually
needed, i.e., where bounded quantifications occur in the types.

5. Type inference for MLF

In this section, we present the type-inference algorithm taken from the MLF paper [6], augmented with a type-
directed translation that produces a System-F term (also calledruntime term) from an MLF term.

5.1 Runtime types

The difference between a term and its translation is that the translation is fully type-annotated, and that evidence
is passed explicitly. Since the evidence that is required is dictated by the MLF types, it is not surprising that the
types of the translated System-F terms are directly related to the types of the original MLF terms.

Figure 3 shows how a System-F typeσ∗ can be computed from an MLF typeσ. We callσ∗ theruntime type
of σ. The definition is organized in such a way that the following property holds:

THEOREM 2. The runtime type of an MLF typeσ is the runtime type of its normal form2, i.e.,

σ∗ = (nf(σ))∗

The translation of a monotypeτ is τ itself. No qualified types can occur in monotypes, neither is there
polymorphism, so we can safely reuseτ , which is a valid System-F type. The type⊥ is mapped to∀α · α.

2 Recall that Figure 1 describes how to compute the normal form of an MLF type.

13 2005/4/25

When dealing with bounds, most cases are dictated by the desired property given by Theorem 2. The next
three cases are therefore directly based on the corresponding rules for normalization.

A constraint for a variable that does not occur in the rest of the type is irrelevant and can be dropped. No
evidence is required, because it would not be used anyway. If we have a type∀(α �v σα). σ wherenf(σ) = α,
then the type is equivalent toσα, and we can use the runtime representation ofσα. Each monotypeτ in MLF
has the property that onlyτ itself is an instance ofτ . Since we already argued that there is no need for evidence
in relation to monotypes, we can inline a constraint where the bound is equivalent to a monotype.

The final two cases deal with non-trivial bounds. In the case of an unbounded quantification, we introduce a
quantification in System F as well. Because any type argument will do, no further information is required. This
is different in the final case:

(∀(α �v σα). σ)∗ .= ∀α · (σ∗α → α) → σ∗

It shows that any bound that does not match any of the other cases is represented using a function argument.
The argument provides evidence for the bound: for a flexible bound, it demonstrates thatα is indeed an instance
of σα by giving a transformation from anyσ∗α value into anα value; for a rigid bound, the argument demonstrates
thatα is equivalent toσα.

For the type inference algorithm to be correct, it must supply well-behaved functions for evidence parameters.
The transformation functions may provide, remove, or reorder evidence, but not add any computation beyond
that. As an example of the type translation, consider the type ofxs2 from Section 4:

∀(γ ≥ ∀α β. α → β → α). [γ]

Let σγ = ∀α β. α → β → α. Then∀(γ ≥ σγ). [γ] matches the last case in the definition of()∗, hence its
translation is

∀γ · (σ∗γ → γ) → [γ]∗

The type[γ] is a monotype, its translation is thus also[γ]. It remains to translateσγ . The quantifications onα
andβ are unbounded, and abbreviations for(α ≥ ⊥) and(β ≥ ⊥). The next to last case matches twice, hence
σ∗γ = ∀α β · α → β → α, and consequently

∀γ · ((∀α β · α → β → α) → γ) → [γ]

If we return to the runtime representation given forx2 in Figure 2, namely

Λγ. λ(v2 :: (∀α β · α → β → α) → γ). (v2 const∗ : xs∗1 γ)

we see that it indeed has precisely this System-F type.
In the term translation we refer to runtime evidence by name, like thev2 in the above example. In the

translation algorithm we therefore make use of labeled prefixes where each bound is labeled. The runtime
evidence for a bound(α �v σ) is now defined by the namev with type (σ∗ → α). Of course, the labels are
assigned internally by the compiler and are never exposed to the user. Furthermore, just like the names of
quantifiers can be alpha-converted within a polytypeσ, the labels associated with the bounds of the quantifiers
can be converted as well, and we assume that this is implicitly done in such a way that all bound variables and
all labels in a prefix are always distinct.

A slight complication to the translation algorithm is that we do not pass evidence for trivial bounds that are
removed by normalizing the type. The type inference algorithm therefore makes use of two helper functions
app andabs, given in Figure 4, that supply evidence parameters or abstract from evidence. Both functions turn
an MLF type into a context that can be filled with a proper System-F term.

The functionapp supplies evidence arguments for a term of typeσ. It is structured exactly like the cases of
type translation and it behaves uniformly over normalized types:

14 2005/4/25

app(τ) .= •
app(⊥) .= • (∀α · α)

app(∀(α �v σα). σ) .= app(σ) if α /∈ ftv(σ)
app(∀(α �v σα). σ) .= app(σα) if nf(σ) = α

app(∀(α �v σα). σ) .= app(σ) if nf(σα) = τ

app(∀(α �v ⊥). σ) .= app(σ) [• α]
app(∀(α �v σα). σ) .= app(σ) [• α v]

abs(τ) .= •
abs(⊥) .= Λα. •
abs(∀(α �v σα). σ) .= let α 7→ σ∗α; v 7→ I α in abs(σ) if α /∈ ftv(σ)

.= let α 7→ σ∗α; v 7→ I α in (abs(σα)[abs(σ)]) if nf(σ) = α

.= let α 7→ σ∗α; v 7→ I α in abs(σ) if nf(σα) = τ

abs(∀(α �v ⊥). σ) .= Λα. let v 7→ λx . x α in abs(σ)
abs(∀(α �v σα). σ) .= Λα. λ(v : σ∗α → α). abs(σ)

Figure 4. Type-directed application and abstraction

app(σ) = app(nf(σ))

Furthermore, we can easily check that it always supplies type-correct evidence for non-trivial bounds:

e∗ :: (∀Q . τ)∗ ⇒ app(∀Q . τ)[e∗] :: τ∗

The interesting cases forapp are again the last two cases. For an unconstrained bound(α �v ⊥) we pass the
type parameterα. This is the same as in a standard translation from Hindley-Milner types to System F. The last
case supplies evidence for a non-trivial bound(α �v σ). As signified by the label, the evidence is bound in the
environment by the namev , and we simply pass the type parameterα and the evidencev .

The abstraction functionabs abstracts from evidence for non-trivial bounds, and binds the names and types
of all trivial bounds. Again, this function is structured exactly like type translation andapp. However, it does
not behave uniformly over normalized types since it explicitly binds the names of non-trivial bounds that are
eliminated during normalization. As we will see in the unification algorithm, the functionabs is always used
under a certain prefix. If a terme has a translation terme∗ of typeτ∗ under a prefixQ , thenabs can lift it to the
type(∀Q . τ)∗. More formally:

abs(∀Q . τ)[e∗] :: (∀Q . τ)∗

The abstraction algorithm needs to bind all evidence names and types in the prefix. Trivial bounds can be
satisfied in only one way, we therefore substitute their labels and type arguments. It makes no sense to abstract
over trivial evidence, we rather provide it immediately.

Non-trivial bounds, however, are lambda bound, and have to be supplied later.
The first two cases on monomorphic types and⊥ have nothing to abstract. The next three cases deal with

trivial bounds. The first of these three deals with a dead bindingα /∈ ftv(σ). It is safe to treatα asσα, and to
bind the evidencev to an identity transformation. We use the notationlet v 7→ e in x to denote the substitution
of v by e in the System-F termx . The next case is a direct substitution whereα can be bound toσα itself,
and wherev is again an identity transformation. The last trivial bound concerns monomorphic types where the
evidence can also be bound to an identity sinceτ∗ = τ .

15 2005/4/25

(inf-var)
x : σ ∈ Γ

Q |Γ ` x : (Q , σ) x

(inf-let)

Q |Γ ` e1 : (Q1, σ1) e∗1
Q1 | (Γ, x : σ1) ` e2 : (Q2, σ2) e∗2

Q |Γ ` (let x = e1 in e2) : (Q2, σ2)
(λ(x : σ∗1). e

∗
2) e∗1

(inf-app)

fresh(v ,w , u, α, β, γ)
Q |Γ ` e1 : (Q1, σ1) e∗1
Q1 |Γ ` e2 : (Q2, σ2) e∗2

Q ′ = (Q2, α ≥v σ1, β ≥w σ2, γ ≥u ⊥)
(Q ′) α ∼ β → γ : (Q3,L)

(Q4,Q5) = Q3 ↑ dom(Q) σ = ∀Q5. γ
e∗ = abs(σ)[L in (v e∗1) (w e∗2)]
Q |Γ ` (e1 e2) : (Q4, σ) e∗

(inf-lam)

fresh(v ,w , α, β)
(Q , α ≥v ⊥) | (Γ, x : α) ` e : (Q1, σ1) e∗

(Q2,Q3) = Q1 ↑ dom(Q)
σ = ∀(Q3, β ≥w σ1). α → β
f ∗ = abs(σ)[λ(x : α).w e∗]

Q |Γ ` (λx . e) : (Q2, σ) f ∗

Figure 5. Type inference

The final two cases of abstraction handle non-trivial bounds where the evidence is passed at runtime. The
unconstrained bound(α �v ⊥) just abstracts over the type argumentα – the runtime evidencev is bound to a
function that passesα as any type is trivially an instance of∀α · α. As apparent from the corresponding rule in
app, the bound(α �v σα) gets full evidence passed: both the type argumentα and the runtime evidencev are
lambda bound, wherev is bound to a function that transforms a typeσ∗α to its instantiation typeα.

5.2 Type inference

We are now in the position to present the type inference algorithm for MLF, extended with type-directed
translation, as shown in Figure 5. The expressionQ |Γ ` e : (Q ′, σ) e∗ infers for a given expressione,
under a prefixQ and type environmentΓ a typeσ that holds under prefixQ ′. Furthermore, it derives a translated
System-F terme∗. Note that the algorithm is exactly the same as the standard type inference algorithm of MLF
modulo the translation terms.

THEOREM 3. The type inference algorithm in Figure 5 derives a well-typed translation term:

Q |Γ ` e : (Q ′, σ) e∗ ⇒ e∗ :: σ∗

This can be proved by induction on the structure of types.
Usually, Hindley-Milner based type inference algorithms infer a type under a certain substitution. With MLF,

the prefix subsumes the role of the substitution. In the prefix, type variables can be bound to monomorphic and
polymorphic types. The type environmentΓ is standard and maps term variablesx to polymorphic typesσ. The
environmentΓ is extended with a variablex asΓ, x ::σ, where the new binding ofx shadows a previous binding
of x in Γ. Initially, both the prefixQ and the environmentΓ are empty.

The rule(inf-var) infers the type of a variablex by simply looking up the type in the environment. The
translated term is justx and the prefix is unchanged. The rule(inf-let) is also straightforward: it infers the type
for thelet bound expressione1 and then for the bodye2 with x bound to the inferred type ofe1. The translated
term is phrased as lambda expression since the System-F language has nolet bindings. The rule forlet bindings
is much more involved in Hindley-Milner systems as it is the one place where generalization to polymorphic
types takes place. In contrast, in MLF generalization is performed as part of the rules for application and lambda,
hence no special actions are necessary forlet bindings.

16 2005/4/25

(update)

(Q1, (Q3, α �v σ0,Q4)) = Q ↑ ftv(σ)
(�v = (>)) ∨ ((Q) σ0 @−? σ) fresh(w)

L′ = let v 7→ w ◦ f in L
(Q ,L) C (α � σ)f

.= ((Q1Q3, α �w σ,Q4),L′)

(merge)

((Q1, α1 �v1 σ,Q2, α2 �v2 σ,Q3) = Q ∨
(Q1, α2 �v2 σ,Q2, α1 �v1 σ,Q3) = Q)

Q ′ = (Q1, α1 �v1 σ, α2 =w α1,Q2Q3) fresh(w)
(Q ,L) C (α1 ∧ α2)

.= (Q ′, let v2 7→ w ◦ v1 in L)

Figure 6. Update and merge

The rule for application(inf-app) first infers the types for the functione1 and the argumente2. After that, it
extends the prefix with fresh bindings for those types and unifies them using the unification algorithm shown in
Figure 7. The unification algorithm is the core of MLF and we discuss this in depth in the next section. For now,
it is sufficient to know that the expression(Q) τ1 ∼ τ2 : (Q ′,L) unifies two monomorphic typesτ1 andτ2

under prefixQ , returning a new prefixQ ′ such that(Q ′) τ1 ≡ τ2. It also returns anevidence substitutionL
which is explained in the next paragraph. Since the MLF inference algorithm infers polymorphic types, it must
generalize the result typeγ. Generalization works by splitting the prefix resulting from unification (Q3) under
the domain of original prefixQ in the prefixes(Q4,Q5). The generalized typeσ of the application is simply
(∀Q5. γ) under the prefixQ4. See Appendix A for a definition of the split function.

The translation of the application terms is more involved. First of all, we need to use the translated terme∗1
ande∗2 at their instantiated types, namelyα andβ. Fortunately, as apparent from the bounds inQ ′, the runtime
evidence for the conversion fromσ∗1 to α is given byv , andw gives the evidence forσ∗2 → β. A well-typed
translated application is now given by(v e∗1) (w e∗2). Of course, we must be careful to ensure that the names
v andw are actually bound somewhere. As we saw in the previous section, the abstraction function binds all
evidence of a certainσ. In our case,abs(σ)[(v e∗1) (w e∗2)] binds all evidence inQ5. Since we work under
prefix Q4 all evidence inQ4 andQ5, i.e.,Q3 is bound. However, we tookv andw from Q ′ and we can not
be sure thatQ3 is equal toQ ′. That is where the evidence substitutionL resulting from unification comes into
play: it defines all evidence inQ ′ in terms of evidence inQ3. By applying this on the translated application, we
get a well-formed System-F term:abs(σ)[L in (v e∗1) (w e∗2)].

The inference rule for lambda expression(inf-lam) infers a type for the bodye under the assumption that
argumentx has typeα, where the bound onα is unconstrained(α ≥v ⊥). Again, it generalizes the result type
by splitting the inferred prefix of the bodyQ1 under the original prefixQ in the prefixes(Q2,Q3). The inferred
type of the lambda expressionσ is now∀(Q3, β ≥w σ1). α → β. This nicely shows that the result of the lambda
expression can be polymorphic itself. As a practical example, the inferred type of theconst function in MLF is:

(λx . λy . x) :: ∀α. α → (∀β. β → α)

The translated term for a lambda expression uses the evidencew to instantiate the terme∗ of type σ∗1 to β,
resulting in the term(λ(x : α).w e∗) :: (α → β). The abstraction function onσ binds all evidence in
(Q3, β ≥w σ1) and returns a well-formed System-F term of typeσ∗, namelyabs(σ)[λ(x : α).w e∗].

5.3 Update and merge

Before we can describe the unification algorithm, we define two helper functions(update) and(merge) shown
in Figure 6. These functions are used by unification and are the only functions that change the unification
prefix. A consequence is that these are the only functions that change the evidence substitution. Note that up
to the evidence substitution, the(update) and(merge) algorithms are exactly the same as the standard MLF
algorithms.

17 2005/4/25

(uni-var) (Q) α ∼ α : (Q , ε)

(uni-con)

(Qi−1) τi ∼ τ ′i : (Qi,Li) for i ∈ 1..n
L′ = Ln in . . . in L1

(Q0) g τ1 . . . τn ∼ g τ ′1 . . . τ ′n : (Qn,L′)

(uni-mvar-l)

(α �v σ) ∈ Q σ ∈ V
(Q) τ ∼ nf(σ) : (Q ′,L)

(Q) τ ∼ α : (Q ′,L)

(uni-mvar-r)

(α �v σ) ∈ Q σ ∈ V
(Q) nf(σ) ∼ τ : (Q ′,L)

(Q) α ∼ τ : (Q ′,L)

(uni-mono-r)

(α �v σ) ∈ Q τ /∈ A σ /∈ V
α /∈ dom(Q / τ)

(Q) σ ∼m τ : (Q0,L0, f)
(Q1,L1) = (Q0,L0) C (α � τ)f

(Q) α ∼ τ : (Q1,L1)

(uni-mono-l)

(α �v σ) ∈ Q τ /∈ A σ /∈ V
α /∈ dom(Q / τ)

(Q) σ ∼m τ : (Q0,L0, f)
(Q1,L1) = (Q0,L0) C (α � τ)f

(Q) τ ∼ α : (Q1,L1)

(uni-poly)

(α1 �v1 σ1) ∈ Q (α2 �v2 σ2) ∈ Q
α1 6= α2 σ1 /∈ V σ2 /∈ V

α1 /∈ dom(Q / σ2) α2 /∈ dom(Q / σ1)
(Q) σ1 ∼p σ2 : (Q0, σ0,L0, f1, f2)

(Q1,L1) = (Q0,L0) C (α1 � σ0)f1 C (α2 � σ0)f2 C (α1 ∧ α2)
(Q) α1 ∼ α2 : (Q1,L1)

Figure 7. Monomorphic unification

(mono-bot) (Q) ⊥ ∼m τ : (Q , ε, λx . x τ∗)

(mono-poly)

∀Q1. τ1 = σ1

(QQ1) τ1 ∼ τ : (Q2,L)
(Q3,Q4) = Q2 ↑ dom(Q) σ = ∀Q4. τ
fσ∗1→τ∗ = λeσ∗1

. abs(σ)[L in app(σ1)[e]]

(Q) σ1 ∼m τ : (Q3,L, f)

Figure 8. Mono-poly unification

The expression(Q ,L) C (α �σ)f updates the prefixQ and evidence substitutionL returning a pair(Q ′,L′)
whereQ ′ is the updated prefix, and whereL′ is the updated evidence substitution. As defined in Figure 6, the
update operation updates the bound(α �v σ0) ∈ Q with the bound(α �w σ). It also prevents the update of
rigid bindings with a less polymorphic type through theabstraction checkalgorithm(Q) σ0 @−? σ, which is
described in the thesis of Le Botlan [5].

Since the bound ofv disappears from the prefix, we need to bind it in the evidence substitutionL. The
evidence term forv must have typeσ∗0 → α. Since the newly bound evidencew has typeσ∗ → α, we just need
a runtime function of typeσ∗0 → σ∗ to be able to bind the evidencev in terms of the new prefix. This functionf
is passed with the update expression as a subscript of the new bound and will be constructed during unification.
Therefore, we can substitute all occurrences of evidencev by the termw ◦ f .

The merge expression(Q ,L) C (α1 ∧ α2) merges the equal bounds of two type variablesα1 andα2 in the
prefix Q and evidence substitutionL, returning an updated prefix and evidence substitution as a pair(Q ′,L′).
Since the evidencev2 disappears, we redefine it in terms of the new evidencew andv1. Since the evidencew
transformsα1 → α2 andv1 transformsσ∗ → α1, we can substitute all occurrences of the evidencev2 by the
termw ◦ v1.

5.4 Unification

The algorithm for unification (∼) is defined in Figure 7 and makes use of the helper functions for mono-
poly unification (∼m) defined in Figure 8 and poly unification (∼p) defined in Figure 9. Again, the unification

18 2005/4/25

(poly-bot-l) (Q) ⊥ ∼p σ : (Q , σ, ε, λx . x σ∗, I σ∗)

(poly-bot-r) (Q) σ ∼p ⊥ : (Q , σ, ε, I σ∗, λx . x σ∗)

(poly-poly)

∀Q1. τ1 = σ1 ∀Q2. τ2 = σ2

disjoint(dom(Q), dom(Q1), dom(Q2))
(QQ1Q2) τ1 ∼ τ2 : (Q0,L)

(Q3,Q4) = Q0 ↑ dom(Q) σ = ∀Q4. τ1

fσ∗1→σ∗ = λeσ∗1
. abs(σ)[L in app(σ1)[e]]

gσ∗2→σ∗ = λeσ∗2
. abs(σ)[L in app(σ2)[e]]

(Q) σ1 ∼p σ2 : (Q3, σ,L, f , g)

Figure 9. Poly unification

algorithm is exactly like that of MLF modulo the evidence translation. Also, we have specialized the poly
unification where one argument is a mono type to the mono-poly unification for ease of presentation.

As stated before, the expression(Q) τ1 ∼ τ2 : (Q ′,L) unifies two monomorphic typesτ1 andτ2 under
prefixQ , returning a new prefixQ ′ such thatτ1 andτ2 are equivalent underQ ′, i.e.,(Q ′) τ1 ≡ τ2. The evidence
substitutionL binds all evidence ofQ in terms of evidence inQ ′. The unification essentially follows the
structure of standard first-order unification, except that computation of the unifier is replaced by the computation
of a unifying prefix. Furthermore, we need to do extra work for variables bound to polymorphic types.

During unification, we frequently have to perform a kind of “occurs check”, using the notationα /∈
dom(Q / σ), wheredom(Q / σ) is defined in Appendix A.

The first rule states that equal variables unify with an unchanged prefix and an empty evidence substitution.
Constructors unify if all their arguments unify. The rules(uni-mvar-l) and(uni-mvar-r) unify bounds that are
variables themselves. The next two rules,(uni-mono-l) and (uni-mono-r) unify monomorphic types with a
possibly polymorphic bound using mono-poly unification and update the bound ofα to the monomorphic typeτ .
The last rule unifies two polymorphic bounds using poly unification, updating and merging the bounds ofα1

andα2 with the possibly polymorphic typeσ that is a common instance of their bounds.
The poly unification (∼p) algorithm is defined in Figure 9. The expression(Q) σ1 ∼p σ2 : (Q ′, σ,L, f , g)

unifies two polymorphic typesσ1 and σ2 under prefixQ . The algorithm assumes thatσ1 and σ2 are in
constructed form. The constructed form is a weak form of a normalization that just reveals the structure of
polymorphic type [6], given in Appendix A. Poly unification returns a new prefixQ ′ under which the type
σ is a common instance ofσ1 andσ2. Furthermore, poly unification returns an evidence substitution and two
translations functions:f of typeσ∗1 → σ∗, andg of typeσ∗2 → σ∗. The latter functions are used by the(uni-poly)
rule to update the bounds. The first two rules(poly-bot-l) and(poly-bot-r) unify with unconstrained bounds
and return trivial transformations. Things become more interesting in rule(poly-poly) where two non-trivial
polymorphic types are unified.

The algorithm is exactly like that of MLF: first it instantiates both types and than generalizes over the result.
The interesting part is formed by the construction of the evidence transformersf andg . The transformerf must
have the runtime typeσ∗1 → σ∗, and thus takes a runtime terme of typeσ∗1. The term is instantiated to typeτ1

by using theapp(σ1) function. After binding the evidence underQ0 using the evidence substitutionL resulting
from the mono unification, we can use abstraction overσ to transform to a runtime term of typeσ∗, namely
fσ∗1→σ∗ = λeσ∗1

. abs(σ)[L in app(σ1)[e]]. The construction ofg is equivalent. Note that we rely essentially here
on the law thatapp(σ) = app(nf(σ)), otherwise we could not work on the constructed forms required by the
poly unification.

The mono-poly unification is basically just a specialization of poly unification where one argument is a
monomorphic type. Just like poly unification, it expects its arguments in constructed form. Instead of two
functions that transform to a common instantiation, mono-poly unification just returns a single evidence
transformerf of typeσ∗ → τ∗, which is the main reason for creating a specialized instance of poly unification.

19 2005/4/25

(∀(πv). σ)∗ .= π∗ → σ∗

app(∀(πv). σ) .= app(σ) [• v]

abs(∀(πv). σ) .= λ(v : π∗). abs(σ)

Figure 10. Qualified type translation, application, and abstraction

simplify(Q , τ) .= (τ, ε)
simplify(Q ,⊥) .= (⊥, ε)

Q `̀ π e∗ (σ′,L) = simplify(Q , σ)
simplify(Q ,∀(πv). σ) .= (σ′, let v 7→ e∗ in L)

(σ′,L) = simplify(Q , σ)
simplify(Q ,∀Q ′. σ) .= (∀Q ′. σ′,L)

Figure 11. Simplification

6. Adding predicates

With all the evidence machinery in place, it is now easy to add evidence translation for qualified types. Since we
store predicates as part of the prefix, we only need to extend the definitions of type translation()∗, evidence
applicationapp, and evidence abstractionabs as shown in Figure 10. We assume here that each language of
predicates comes with a suitable translation function from predicatesπ to runtime evidence of typeπ∗.

Picking up the examples from Section 4.1, a type classC could be represented by a proper runtime dictionary
of type C ∗ that contains the member functions ofC . An implicit argument predicate(?x :: σ) is simply
represented by a function of the same type:(?x :: σ)∗ = σ∗. As a final example, ahaspredicate(l :: α ∈ r) for
records could be represented by the runtime offset ofl in r , in other words,(l :: α ∈ r)∗ = Int .

There is one other place where we have to change the unification algorithm. In the(update) function
(Figure 6), the abstraction check verifies if the new bound is polymorphic enough. The abstraction check
algorithm needs to take predicates into account, namely, it must test if the two type schemes contain exactly
the same predicates. Fortunately, predicates come with an entailment relation (`̀) that make this easy to verify.
Since the type schemes in the abstraction check are already in an instance relation, we can consider two predicate
sets equal when each predicate set entails the other.

Normally, an implementation of qualified types performssimplificationwhere constant predicates are re-
solved to known evidence. For example, once a predicateNum α is instantiated toNum Int , we can eliminate
the predicate and supply constant evidence at runtime. We assume that the language of predicates comes with
an entailment relation that derives the evidencee of a predicateπ under a prefixQ :

Q `̀ π e

For example, the expressionQ `̀ Num Int numInt asserts that we can derive evidencenumInt that
Num Int holds under some prefixQ . The derived evidence is in this case the runtime dictionary of theNum
class forInt . Of course, the entailment relation should only derive well-typed evidence terms:

Q `̀ π e ⇒ e :: π∗

Since the entailment works under a prefix instead of a set of predicates, this also allows for a satisfactory
treatment of improvement [4], but a full discussion is beyond the scope of this paper.

20 2005/4/25

Using the entailment relation, we can define a simplification algorithm for types, as shown in Figure 11.
The expressionsimplify(Q , σ) simplifies σ under prefixQ . It returns a pair of a simplified typeσ′ and an
evidence substitutionL. The evidence substitution will bind the evidence of predicates that are resolved during
simplification. We assume that the argument tosimplify is in normal form. The first two cases deal with
mono types and⊥. The next case uses the entailment relation to simplify a resolved predicate. The evidence
substitution is extended with the derived evidence for the predicateπ. Since we work on normal forms, the final
case simply ignores a bound and leaves the type as it is.

The type inference algorithm is now extended with the rule(simplify) that can be applied at any time to
simplify the type of an expression.

(simplify)

Q |Γ ` e : (Q ′, σ1) e∗

(σ2,L) = simplify(Q ′, nf(σ1))
e∗2 = abs(σ2)[L in app(σ1)[e∗]]

Q |Γ ` e : (Q ′, σ2) e∗2

We use the abstraction and application algorithm to construct a well-typed runtime term with the simplified
type, where the evidence substitution resulting from simplification binds resolved predicates. Since we call
simplify with the normalized form ofσ1, simplification can also speed up type inference without predicates as
the abstraction and application functions can deal with simpler types.

7. Conclusion

In this article, we have shown how to combine the MLF type system with qualified types, and given an evidence
relation to System F that demonstrates how to implement such a system efficiently. MLF with its impredicative
first-class polymorphism has a number of advantages over comparable systems, and it seems so far that it scales
well to programming languages with other type system extensions. In the future, we plan to analyze interactions
of MLF with other features such as existential types.

We have given examples of MLF usage and demonstrated that it is convenient to use in practice, and that the
added complexity can be kept hidden from the user most of the time. We would like to see MLF more widely
used. In particular, we believe that MLF with qualified types can be seriously considered as an underlying type
system for the Haskell programming language.

Acknowledgements We are indebted to Didier Le Botlan for his extensive and constructive comments on a
draft of this paper.

References
[1] B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records and variants. Technical Report

NOTTCS-TR-96-3, Dept. of Computer Science, University of Nottingham, 1996.

[2] J. Hindley. The principal type scheme of an object in combinatory logic.Transactions of the American Mathematical
Society, 146:29–60, Dec. 1969.

[3] M. P. Jones. A theory of qualified types. In4th. European Symposium on Programming (ESOP’92), volume 582 of
Lecture Notes in Computer Science, pages 287–306. Springer-Verlag, Feb. 1992.

[4] M. P. Jones. Simplifying and improving qualified types. Technical Report YALEU/DCS/RR-1040, Dept. of Computer
Science, Yale University, 1994.

[5] D. Le Botlan. MLF: Une extension de ML avec polymorphisme de second ordre et instanciation implicite. PhD
thesis, INRIA Rocquencourt, May 2004.

[6] D. Le Botlan and D. Ŕemy. MLF: raising ML to the power of system F. InProceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages 27–38. ACM Press, 2003.

[7] D. Leijen. Morrow: a row-oriented programming language.http://www.cs.uu.nl/~daan/morrow.html, July
2004.

[8] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard ML (Revised). The MIT Press, 1997.

21 2005/4/25

[9] S. Peyton Jones, editor.Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press, 2003.

[10] S. Peyton-Jones and M. Shields. Practical type inference for arbitrary-rank types. Submitted to the Journal of
Functional Programming (JFP), 2004.

[11] C. Shan. Sexy types in action.ACM SIGPLAN Notices, 39(5):15–22, 2004.

A. Supplemental algorithms

Useful domain:

dom(Q / σ) .= dom(Q / ftv(σ))

α ∈ dom(Q / β1 . . . βn) ⇔̇ Q = (Q1, α � σ,Q2) ∧ α ∈ ftv(∀Q2. β1 → · · · → βn → ())

Constructed forms:

cf(τ) .= τ

cf(⊥) .= ⊥
cf(∀(α � σα). σ) .= cf(σα) if nf(σ) = α

cf(∀(α � σα). σ) .= ∀(α � σα). cf(σ)

Free type variables:

ftv(α) .= {α}
ftv(g τ1 . . . τn) .= ftv(τ1) ∪ · · · ∪ ftv(τn)
ftv(⊥) .= ∅
ftv(∀(α � σα). σ) .= (ftv(σ)− {α}) ∪ ftv(σα) if α ∈ ftv(σ)
ftv(∀(α � σα). σ) .= ftv(σ) if α /∈ ftv(σ)

Splitting a prefix. The split algorithm takes a prefixQ and a set of type variablesα, and splitsQ in two parts
(Q1,Q2) such that the domain ofQ1 is the domain ofQ relevant toα.

() ↑ α
.= ((), ())

α ∈ α (Q1,Q2) = Q ↑ (α− α) ∪ ftv(σ)
(Q , α � σ) ↑ α

.= ((Q1, α � σ),Q2)

α /∈ α (Q1,Q2) = Q ↑ α

(Q , α � σ) ↑ α
.= (Q1, (Q2, α � σ))

22 2005/4/25

