
lhs2TEX

Andres Löh

Dutch HUG meeting – October 12, 2009

What lhs2TEX is . . .

A preprocessor.

I Input: a LATEX document containing directives and Haskell-like code.

I Output: a LATEX document where the code is formatted as LATEX as
well; or Haskell code that can be run.

Useful for:

I LATEX documents containing Haskell code – papers, documentation,
presentations, . . .

I LATEX documents containing other kinds of aligned code

I many things you might want a Haskell preprocessor for

I managing different versions of a document

What lhs2TEX is . . .

A preprocessor.

I Input: a LATEX document containing directives and Haskell-like code.

I Output: a LATEX document where the code is formatted as LATEX as
well; or Haskell code that can be run.

Useful for:

I LATEX documents containing Haskell code – papers, documentation,
presentations, . . .

I LATEX documents containing other kinds of aligned code

I many things you might want a Haskell preprocessor for

I managing different versions of a document

What lhs2TEX is not . . .

I The conversion is not fully automatic.

I You have lots of freedom, but you have to make some choices.

Hello world

Input

\documentclass{article}
%include polycode.fmt
\begin{document}

> main = putStrLn "Hello world"

\end{document}

Output

main = putStrLn "Hello world"

History

I Created by Ralf Hinze in 1997. Most of the functionality is due to
Ralf.

I I picked up development in 2002. New features:
I better code alignment,
I using lhs2TEX as a preprocessor also to generate code,
I improved possibilities of calling GHC from within a document.

Inline code

Inline code is surrounded by vertical bars.

Input

The function |map| takes two arguments,
a function |f :: a -> b| and a value |x| of type |a|.

Output

The function map takes two arguments, a function f :: a→ b and a value
x of type a.

Inline code – contd.

Vertical bars occurring in inline code have to be escaped.

Input

The function |or| can be defined using |foldr|,
namely as |foldr (||||) True|.

Output

The function or can be defined using foldr , namely as foldr (∨) True.

As can be seen, some operators are by default formatted as symbols.

Haskell syntax

The parser is very liberal. It only approximates the Haskell syntax.
Generally, Haskell constructs should be typeset nicely.

Input

|let x = 2 in x * x|\par
|case x of Foo -> Bar|\par
|[x * x || x <- xs]|\par
|\ x -> x x|

Output

let x = 2 in x ∗ x
case x of Foo → Bar
[x ∗ x | x ← xs]
λx → x x

Verbatim

Much as inline Haskell, we can also produce verbatim code by
surrounding it in @s. Again, escaping other @s is necessary.

Input

Typing @foo@ yields |foo|. Here’s an escaped @@.

Output

Typing foo yields foo. Here’s an escaped @.

Formatting

Directives are lines starting with a % immediately followed by a
recognized lhs2TEX command. The directive %format can be used to
change the appearance of tokens.

Input

%format True = "\top "
%format foldr = "{\color{blue}\textbf{foldr}} "
|foldr (||||) True|

Output

foldr (∨) >

Formatting – contd.

Formatting directives can also be used to undo predefined formattings.
The default formatting of variables and constructors makes use of
\Varid and \Conid, respectively.

Input

|not x|
%format not = "\Varid{not}"
|not x|
\let\Varid\mathbf
|not x|

Output

¬ x , not x , not x

Implicit formatting

For indices there are special cases where no right hand side has to be
given. The directive itself is still required.

Input

|a1|, |a_1|, |a_not|

%format a1
%format a_1
%format a_not
|a1|, |a_1|, |a_not|

Output

a1 , a 1 , a not
a1, a1, a¬

Parameterized formatting

Input

%format <> = "\diamond "
%format Instr x = "{\let\Conid\texttt " x "}"
%format eval x = "\llbracket " x "\rrbracket "

> eval (Add x y) = eval x <> eval y <> [Instr ADD]

Output

J(Add x y)K = JxK � JyK � [ADD]

Too many parentheses!

Parameterized formatting and parentheses

Input

%format eval (x) = "\llbracket " x "\rrbracket "

> (eval (Add x y))

%format (eval (x)) = "\llbracket " x "\rrbracket "

> (eval (Add x y))

Output

(JAdd x yK)

JAdd x yK

Blocks of code

Blocks of code can be typeset using a code-environment or by prefixing
every line with a >:

Input

This is a |let| expression:

> let x = 2
> in x * x

Output

This is a let expression:

let x = 2
in x ∗ x

Blocks of code – contd.

Input

This is a |let| expression:
\begin{code}
let x = 2
in x * x
\end{code}

Output

This is a let expression:

let x = 2
in x ∗ x

Unused code

Code starting with < or in a spec-environment is also typeset – for code
that should be included in the output, but not run.

Input

This is a |let| expression:
\begin{spec}
let x = 2
in x * x
\end{spec}

Output

This is a let expression:

let x = 2
in x ∗ x

Comments are text

Comments are typeset as text. Use < or spec for larger blocks of
commented code that should be shown.

Input

> 0 :: Num a => a -- not of type |Int|, but overloaded

Output

0 :: Num a⇒ a -- not of type Int, but overloaded

Alignment

Alignment is lhs2TEX’s strong point: a token that is prefixed by two or
more spaces is aligned with other tokens on the same column.

Input

> map f [] = []
> map f (x:xs) = f x : map f xs

Output

map f [] = []
map f (x : xs) = f x : map f xs

Alignment and Indentation

Indentation is with respect to aligned columns.

Input

%format ... = "\dots "

> instance (Ord a) => Ord [a] where
> ...
> compare (x:xs) (y:ys) = case compare x y of
> EQ -> compare xs ys
> other -> other

Output

instance (Ord a)⇒ Ord [a] where
. . .
compare (x : xs) (y : ys) = case compare x y of

EQ → compare xs ys
other → other

Alignment – contd.

Alignment does not have to affect subsequent lines.

Input

> consTree a (Deep s (Two b c) m sf) =
> Deep (size a + s) (Three a b c) m sf
> consTree a (Deep s (One b) m sf) =
> Deep (size a + s) (Two a b) m sf

Output

consTree a (Deep s (Two b c) m sf) =
Deep (size a + s) (Three a b c) m sf

consTree a (Deep s (One b) m sf) =
Deep (size a + s) (Two a b) m sf

Watch out that code is not aligned by accident!

Alignment – contd.

Alignment is computed by LATEX, using the polytable package that was
written specifically for lhs2TEX.

Input

%format i = "\Varid{iiiiiiiiiiiiii}"

> xxx yyy zzz
> aaaaa bbbb
> i jjjjjjj
> c dddd

Output

xxx yyy zzz
aaaaa bbbb
iiiiiiiiiiiiii jjjjjjj
c dddd

Reusing alignment

Alignment information can be shared for multiple code blocks.

Input

\savecolumns

> eval (Const n) = n
> eval (Neg x) = - (eval x)

And now addition:\restorecolumns

> eval (Add x y) = eval x + eval y

Output

JConst nK = n
JNeg xK = − JxK

And now addition:

JAdd x yK = JxK + JyK

Including files

Using an %include directive, a file can be included. This is used for
.fmt files that contain lhs2TEX libraries, but can be used for parts of the
document instead of LATEX commands.

Input

%include polycode.fmt

There are a number of useful files shipped with lhs2TEX.

Libraries

I polycode.fmt – standard library

I colorcode.fmt – some code styles using colored backgrounds

I greek.fmt – format greek identifiers

I forall.fmt – universal quantifier magic

I spacing.fmt – spacing hacks

Libraries – standard

Using the lhs2TEX standard library, you can easily adapt the look and feel
of lhs2TEX.

Input

\renewcommand\hscodestyle{\small\rmfamily}

> foldr op e [] = []
> foldr op e (x:xs) = x ‘op‘ foldr op e xs

Output

foldr op e [] = []
foldr op e (x : xs) = x ‘op‘ foldr op e xs

Libraries – standard

Input

\framedhs

> foldr op e [] = []
> foldr op e (x:xs) = x ‘op‘ foldr op e xs

Output

foldr op e [] = []
foldr op e (x : xs) = x ‘op‘ foldr op e xs

Libraries – standard

Sometimes you want to have code as part of the module and still show it
inline.

Input

We therefore define
\inlinehs

> mapM f = sequence . map f

and are done.

Output

We therefore define mapM f = sequence ◦map f and are done.

Libraries – Greek identifiers

Input

%include greek.fmt

> gamma = alpha + beta

Output

γ = α + β

Libraries – universal quantifier magic

If you use Haskell code with explicit quantifiers, you probably want to
include forall.fmt:

Input

%include forall.fmt

> mapM :: forall m. (Monad m) => (a -> m b)
> -> [a] -> m [b]
> mapM f = sequence . map f

Output

mapM :: ∀m.(Monad m)⇒ (a→ m b)
→ [a]→ m [b]

mapM f = sequence ◦map f

Note the different formatting of the periods.

Conditionals

There are directives %if, %else, %elif and %endif that can be used to
process parts of the document conditionally.

I Documentation, paper, presentation from the same sources.

I Process differently depending on mode.

Using %let or command line flags, we can set variables to boolean or
integer values.

Testing current mode

Input

%if style == newcode
%format (RED (x)) = x
%else
%format (RED (x)) = "{\color{red}" x "}"
%endif

> return (12 + RED x)

Output

return (12 + x)

You can annotate your code and still run it.

What else?

I By using formatting directives and conditionals, you can typecheck
your documents.

I Lhs2TEX is not limited to displaying Haskell code. Using formatting
directives, you can use it to display a wide range of languages.

How to get it

I Current version is 1.14.

I Available from Hackage (i.e., cabal install lhs2tex).

I Version 1.15 should appear soon (mainly interesting for Windows
users).

I Let me know if you’re doing something cool with lhs2TEX.

	Examples

