
Hello HaskellX!
An Introduction to (IO in) Haskell

Andres Löh – Haskell eXchange 2022
2022-12-07 — Copyright © 2023 Well-Typed LLP

Well-Typed
The Haskell Consultants



Hello

main = putStrLn "Hello HaskellX!"

Well-Typed



Hello

main = putStrLn "Hello HaskellX!"

"Hello HaskellX!" :: String

Well-Typed



Hello

main = putStrLn "Hello HaskellX!"

putStrLn :: . . . -> . . .

"Hello HaskellX!" :: String

Well-Typed



Hello

main = putStrLn "Hello HaskellX!"

putStrLn :: String -> . . .

"Hello HaskellX!" :: String

Well-Typed



Hello

main = putStrLn "Hello HaskellX!"

putStrLn :: String -> IO ()

"Hello HaskellX!" :: String

Well-Typed



Hello

main = putStrLn "Hello HaskellX!"

main :: IO ()

putStrLn :: String -> IO ()

"Hello HaskellX!" :: String

Well-Typed



A conversation

main = do
putStrLn "Who are you?"
name <- getLine
putStrLn ("Nice to meet you, " <> name)

Well-Typed



A conversation

main = do
putStrLn "Who are you?"
name <- getLine
putStrLn ("Nice to meet you, " <> name)

getLine :: IO String

Well-Typed



A conversation

main = do
putStrLn "Who are you?"
name <- getLine
putStrLn ("Nice to meet you, " <> name)

getLine :: IO Stringname :: String

Well-Typed



A conversation

main = do
putStrLn "Who are you?"
name <- getLine
putStrLn ("Nice to meet you, " <> name)

getLine :: IO Stringname :: String

(<>) :: String -> String -> String

Well-Typed



Wrong

main = do
putStrLn "Who are you?"
putStrLn ("Nice to meet you, " <> getLine)

A String is expected, but an IO String is provided.

Well-Typed



Wrong

main = do
putStrLn "Who are you?"
putStrLn ("Nice to meet you, " <> getLine)

A String is expected, but an IO String is provided.

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



Reduction

("a" <> "b") <> ("c" <> "d")

"ab" <> ("c" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c" <> "d")

("a" <> "b") <> "cd"

"ab" <> "cd"

"abcd"

Reduction order does not matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



More reduction
("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getLine)

"aFrodo" <> ("b" <> getLine)

"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getLine)

("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

Suddenly reduction order does matter!

Well-Typed



Another example

take 1 (("a" <> "b") <> ("c" <> "d"))

reduces to "a" .

take 1 (("a" <> getLine) <> ("b" <> getLine))

reduces to "a" , but how many lines of input should it read?

Well-Typed



Another example

take 1 (("a" <> "b") <> ("c" <> "d"))

reduces to "a" .

take 1 (("a" <> getLine) <> ("b" <> getLine))

reduces to "a" , but how many lines of input should it read?

Well-Typed



Explicit effects

▶ Decouple effects from the order of evaluation.
▶ Order and number of effects are always explicit.
▶ Side-effecting computations are distinguished from their results.

Well-Typed



Laws actually hold

length (x <> x) = 2 * length x

Very sensible.

But would actually be wrong if we allowed x to be getLine .

Well-Typed



Laws actually hold

length (x <> x) = 2 * length x

Very sensible.

But would actually be wrong if we allowed x to be getLine .

Well-Typed



No escape

There is no⋆ function of type

IO a -> a

because we should not lie!

⋆(None that we speak of.)

Well-Typed



Marking effects is good

sum :: [Int] -> Int

vs.

sumAndSendSpamMails :: [Int] -> IO Int

Well-Typed



Abstraction

main :: IO ()
main = do
putStrLn "Who are you?"
name1 <- getLine
putStrLn "Who are you?"
name2 <- getLine
putStrLn
("Nice to meet you, " <> name1 <> " and " <> name2)

Well-Typed



Abstraction

whoAreYou :: IO String
whoAreYou = do
putStrLn "Who are you?"
getLine

main :: IO ()
main = do
name1 <- whoAreYou
name2 <- whoAreYou
putStrLn
("Nice to meet you, " <> name1 <> " and " <> name2)

Well-Typed



Abstraction

prompt :: String -> IO String
prompt text = do
putStrLn text
getLine

whoAreYou :: IO String
whoAreYou = prompt "Who are you?"

main :: IO ()
main = do
name1 <- whoAreYou
name2 <- whoAreYou
putStrLn
("Nice to meet you, " <> name1 <> " and " <> name2)

Well-Typed



Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

Well-Typed



Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

Well-Typed



Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

prompt :: String -> IO String

Well-Typed



Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

prompt :: String -> IO String

map :: (a -> b) -> [a] -> [b]

Well-Typed



Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

Well-Typed



Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

sequence :: [IO a] -> IO [a]

Well-Typed



Separation of concerns

"Are you also at HaskellX?"

"Oh, too bad."

no

"Are you a Haskeller yet?"

"Perhaps after this day."

no

"That's great."

yes

yes

Well-Typed



A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue

| Done String

haskellXConversation :: Dialogue
haskellXConversation =
Ask "Are you also at HaskellX?"
(Done "Oh, too bad.")
(Ask "Are you a Haskeller yet?"
(Done "Perhaps after this day.")
(Done "That's great.")

)

Well-Typed



A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue

| Done String

haskellXConversation :: Dialogue
haskellXConversation =
Ask "Are you also at HaskellX?"
(Done "Oh, too bad.")
(Ask "Are you a Haskeller yet?"
(Done "Perhaps after this day.")
(Done "That's great.")

)

Well-Typed



Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no

interactiveDialogue (Done response) =
putStrLn response

askBooleanQuestion :: String -> IO Bool
askBooleanQuestion question = do
putStrLn question
getBool

getBool :: IO Bool
getBool = do
c <- getChar
putStrLn ""
if c == 'y'
then pure True
else if c == 'n'
then pure False
else do
putStrLn "Please type 'y' or 'n'"
getBool

Well-Typed



Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no

interactiveDialogue (Done response) =
putStrLn response

askBooleanQuestion :: String -> IO Bool
askBooleanQuestion question = do
putStrLn question
getBool

getBool :: IO Bool
getBool = do
c <- getChar
putStrLn ""
if c == 'y'
then pure True
else if c == 'n'
then pure False
else do
putStrLn "Please type 'y' or 'n'"
getBool

Well-Typed



Running a dialogue in the browser
webDialogue :: Dialogue -> IO ()
webDialogue d =
scotty 8000 $ do
get "/" $ from ""
get "/:responses" $ do
responseString <- param "responses"
from responseString

where
from responseString = do
let responses = mapMaybe parseResponse responseString
case replay d responses of
Just (Ask question _ _) ->
htmlPage $ do
p (string question)
ul $ do
li (a ! href (stringValue (responseString <> "y")) $ "yes")
li (a ! href (stringValue (responseString <> "n")) $ "no")

Just (Done response) ->
htmlPage $
p (string response)

Nothing -> status status404

htmlPage :: Html -> ActionM ()
htmlPage =
html . renderHtml . H.html . H.body

parseResponse :: Char -> Maybe Bool
parseResponse 'y' = Just True
parseResponse 'n' = Just False
parseResponse _ = Nothing

replay :: Dialogue -> [Bool] -> Maybe Dialogue
replay (Ask _ _ yes) (True : responses) = replay yes responses
replay (Ask _ no _ ) (False : responses) = replay no responses
replay d [] = Just d
replay _ _ = Nothing

Well-Typed



Conclusions

▶ Precise types marking the presence of side effects.
▶ Require us to be explicit about order when effects are present.
▶ Peace of mind if IO is absent.
▶ Not a high price to pay.
▶ IO actions are first class.
▶ Encourages coding style that limits side effects.
▶ More options for testing.
▶ More precise effect types possible.

▶ Ask many questions.

andres@well-typed.com

Well-Typed



Conclusions

▶ Precise types marking the presence of side effects.
▶ Require us to be explicit about order when effects are present.
▶ Peace of mind if IO is absent.
▶ Not a high price to pay.
▶ IO actions are first class.
▶ Encourages coding style that limits side effects.
▶ More options for testing.
▶ More precise effect types possible.
▶ Ask many questions.

andres@well-typed.com

Well-Typed


