
Datatype-generic data migrations
IFIP WG 2.1 meeting #73, Lökeberg, Sweden

Andres Löh

August 31, 2015

.

.Well-Typed

.The Haskell Consultants

Motivation

Datatypes evolve.

Example:

.

.Well-Typed

Motivation

Datatypes evolve.

Example:

data Person = Person
{ name :: String
, address :: String
}

.

.Well-Typed

Motivation

Datatypes evolve.

Example:

data Person = Person
{ name :: String}

.

.Well-Typed

Motivation

Datatypes evolve.

Example:

data Person = Person
{ lastName :: String
, firstName :: String
}

.

.Well-Typed

Motivation

Datatypes evolve.

Example:

data Person = Person
{ lastName :: String
, firstName :: String
, years :: Int
}

.

.Well-Typed

Why is it a problem?

Within the program itself, it usually is not.

But programs communicate, and produce external
representations of data:

I binary encodings,
I JSON,
I database entries,
I . . .

.

.Well-Typed

Different versions

External representations change . . .

First version:

{ "name" : "Aura Löh"
, "address" : "Regensburg"
}

“Current” version:

{ "lastName" : "Löh"
, "firstName" : "Aura"
, "years" : 2
}

Program should be able to cope with both inputs.

.

.Well-Typed

Different versions

External representations change . . .

First version:

{ "name" : "Aura Löh"
, "address" : "Regensburg"
}

“Current” version:

{ "lastName" : "Löh"
, "firstName" : "Aura"
, "years" : 2
}

Program should be able to cope with both inputs.

.

.Well-Typed

Different versions

External representations change . . .

First version:

{ "name" : "Aura Löh"
, "address" : "Regensburg"
}

“Current” version:

{ "lastName" : "Löh"
, "firstName" : "Aura"
, "years" : 2
}

Program should be able to cope with both inputs.

.

.Well-Typed

Available Haskell options

safecopy

I Define all versions as separate Haskell datatypes.
I Define migration functions between the versions.
I Instantiate a class to get a versioned binary decoding.

api-tools

I Use a DSL to describe the changes between versions.
I Use Template Haskell to derive versioned decoders.

.

.Well-Typed

Available Haskell options

safecopy

I Define all versions as separate Haskell datatypes.
I Define migration functions between the versions.
I Instantiate a class to get a versioned binary decoding.

api-tools

I Use a DSL to describe the changes between versions.
I Use Template Haskell to derive versioned decoders.

.

.Well-Typed

Example: api-tools

changes

version "0.4"
changed record Person
field added years :: Int

version "0.3"
migration record Person SplitName

version "0.2"
changed record Person
field removed address

// initial version
version "0.1"

.

.Well-Typed

Use datatype-genericity

Seems to make sense

I Migrations apply to different datatypes.
I Serialization and deserialization to various formats are

classic examples of datatype-generic programming.
I Different versions of a datatype are usually closely related.

.

.Well-Typed

Representing types

data Person = Person
{ name :: String
, address :: String
}

type instance Code Person = ’[’[String, String]]

Rep (Code Person) = SOP I (Code Person) ≈ Person

type family Code (a :: *) :: [[*]]

class Generic a where
from :: a -> Rep (Code a)
to :: Rep (Code a) -> a

.

.Well-Typed

Representing types

data Person = Person
{ name :: String
, address :: String
}

type instance Code Person = ’[’[String, String]]

Rep (Code Person) = SOP I (Code Person) ≈ Person

type family Code (a :: *) :: [[*]]

class Generic a where
from :: a -> Rep (Code a)
to :: Rep (Code a) -> a

.

.Well-Typed

Representing types

data Person = Person
{ name :: String
, address :: String
}

type instance Code Person = ’[’[String, String]]

Rep (Code Person) = SOP I (Code Person) ≈ Person

type family Code (a :: *) :: [[*]]

class Generic a where
from :: a -> Rep (Code a)
to :: Rep (Code a) -> a

.

.Well-Typed

What is Rep ?

data Person = Person
{ name :: String
, address :: String
}

type instance Code Person = ’[’[String, String]]

Value of type Person :

Person "Aura Löh" "Regensburg"

Value of type Rep (Code Person) (modulo syntactic clutter):

C0 ["Aura Löh", "Regensburg"]

.

.Well-Typed

Sums of products

SOP I xss ≈ NS (NP I) xss

data NS (f :: k -> *) (xs :: [k]) where
Z :: NS f (x ’: xs)
S :: NS f xs -> NS f (x ’: xs)

data NP (f :: k -> *) (xs :: [k]) where
Nil :: NP f ’[]
(:*) :: f x -> NP f xs -> NP f (x ’: xs)

.

.Well-Typed

Generic functions

class Encode a where
encode :: a -> [Bit]
decoder :: Decoder a

Defined via induction on the representation:

gencode :: (Generic a, All2 Encode (Code a))
=> a -> [Bit]

gencode = ...

gdecoder :: (Generic a, All2 Encode (Code a))
=> Decoder a

gdecoder = ...

Yields defaults for the Encode class methods.

.

.Well-Typed

Generic functions

class Encode a where
encode :: a -> [Bit]
decoder :: Decoder a

Defined via induction on the representation:

gencode :: (Generic a, All2 Encode (Code a))
=> a -> [Bit]

gencode = ...

gdecoder :: (Generic a, All2 Encode (Code a))
=> Decoder a

gdecoder = ...

Yields defaults for the Encode class methods.

.

.Well-Typed

History of a datatype

Person1

Person2

Person3

Person4

.

.Well-Typed

History of a datatype

Person1 Code Person1

Person2 Code Person2

Person3 Code Person3

Person4 Code Person4

.

.Well-Typed

History of a datatype

Person1 Code Person1
Migration (Code (Person1)) (Code (Person2))

Person2 Code Person2
Migration (Code (Person2)) (Code (Person3))

Person3 Code Person3
Migration (Code (Person3)) (Code (Person4))

Person4 Code Person4

data Migration :: [[*]] -> [[*]] -> * where
Migration :: (Rep a -> Rep b) -> Migration a b

.

.Well-Typed

History of a datatype

Code Person1
Migration (Code (Person1)) (Code (Person2))

Code Person2
Migration (Code (Person2)) (Code (Person3))

Code Person3
Migration (Code (Person3)) (Code (Person4))

Person Code Person

data Migration :: [[*]] -> [[*]] -> * where
Migration :: (Rep a -> Rep b) -> Migration a b

.

.Well-Typed

History of a datatype

Code Person1
Migration (Code (Person1)) (Code (Person2))

Code Person2
Migration (Code (Person2)) (Code (Person3))

Code Person3
Migration (Code (Person3)) (Code (Person4))

Person Code Person

data Migration :: [[*]] -> [[*]] -> * where
Migration :: (Rep a -> Rep b) -> Migration a b

data History :: Version -> [[*]] -> * where
Initial :: History v c
Revision :: (...)

=> Migration c’ c
-> History v’ c’
-> History v c

.

.Well-Typed

Simple migration

addConstructor :: Migration c (’[] ’: c)
addConstructor = Migration shift

Good, but not quite satisfactory:

I By position rather than name.
I No way to actually give a name to a revision.

.

.Well-Typed

Simple migration

addConstructor :: Migration c (’[] ’: c)
addConstructor = Migration shift

Good, but not quite satisfactory:

I By position rather than name.
I No way to actually give a name to a revision.

.

.Well-Typed

Include names in codes

data Person = Person {name :: String, address :: String}

Plain code:

type family Code (a :: *) :: [[*]]
type instance Code Person =
’[’[String, String]]

Code with metadata:

type family Code’ (a :: *) :: [(Symbol, [(Symbol, *)])]
type instance Code’ Person =
’[’("Person", ’[’("name", String), ’("address", String)])]

Stripping metadata:

type family Simplify (c :: [(Symbol, [(Symbol, *)])]) :: [[*]]

.

.Well-Typed

Include names in codes

data Person = Person {name :: String, address :: String}

Plain code:

type family Code (a :: *) :: [[*]]
type instance Code Person =
’[’[String, String]]

Code with metadata:

type family Code’ (a :: *) :: [(Symbol, [(Symbol, *)])]
type instance Code’ Person =
’[’("Person", ’[’("name", String), ’("address", String)])]

Stripping metadata:

type family Simplify (c :: [(Symbol, [(Symbol, *)])]) :: [[*]]

.

.Well-Typed

Migrations based on codes with metadata

data Migration :: [(Symbol, [(Symbol, *)])]
-> [(Symbol, [(Symbol, *)])]
-> * where

Migration :: (Rep (Simplify a) -> Rep (Simplify b))
-> Migration a b

addField :: (...)
=> Proxy (v :: Version)
-> Proxy (d :: Symbol) -- name of constructor
-> Proxy (f :: Symbol) -- name of field
-> a -- default value
-> History v’ c
-> History v (AddField d f c)

.

.Well-Typed

Migrations based on codes with metadata

data Migration :: [(Symbol, [(Symbol, *)])]
-> [(Symbol, [(Symbol, *)])]
-> * where

Migration :: (Rep (Simplify a) -> Rep (Simplify b))
-> Migration a b

addField :: (...)
=> Proxy (v :: Version)
-> Proxy (d :: Symbol) -- name of constructor
-> Proxy (f :: Symbol) -- name of field
-> a -- default value
-> History v’ c
-> History v (AddField d f c)

.

.Well-Typed

Example

personHistory :: History "0.4" (Code’ Person)
personHistory =

addField [pr|"0.4"|]
[pr|"Person"|] [pr|"years"|]
(2 :: Int)

$ replaceField [pr|"0.3"|]
[pr|"Person"|] [pr|"name"|]
[pr|’["lastName", "firstName"]|]
splitName

$ removeField [pr|"0.2"|]
[pr|"Person"|] [pr|"address"|]

$ initialRevision [pr|"0.1"|]

.

.Well-Typed

Attaching histories to datatypes

class (Generic a, ...) => HasHistory a where
type CurrentRevision a :: Symbol
history :: Proxy a

-> History (CurrentRevision a) (Code’ a)

.

.Well-Typed

Encoding and decoding based on histories

hencode :: (HasHistory a, ...) => a -> [Bit]

I choose latest version from history
I encode version
I encode data generically

hdecode :: (HasHistory a, ...) => Decoder a

I decode version
I choose the corresponding version from history
I decode data generically for that version
I apply the remaining migration functions

.

.Well-Typed

Encoding and decoding based on histories

hencode :: (HasHistory a, ...) => a -> [Bit]

I choose latest version from history
I encode version
I encode data generically

hdecode :: (HasHistory a, ...) => Decoder a

I decode version
I choose the corresponding version from history
I decode data generically for that version
I apply the remaining migration functions

.

.Well-Typed

An annoying detail

For hdecode ,

all types contained in all codes of all revisions

must be in the Encode class.

This means:

I put class constraints in History type,

I index History over all intermediate versions,

I abstract History over class constraints.

.

.Well-Typed

An annoying detail

For hdecode ,

all types contained in all codes of all revisions

must be in the Encode class.

This means:

I put class constraints in History type,

I index History over all intermediate versions,

I abstract History over class constraints.

.

.Well-Typed

Conclusions

I Current code is proof of concept.
I Implementing the migration steps (e.g. addField) is

really ugly and a lot of work.
I But it works and is more safe than other approaches.
I Extends to nested versioning.
I Not tied to a single encoding.
I Efficiency?
I Future: writing older versions.

.

.Well-Typed

