
Design with Types! (In Haskell)

Andres Löh
2021-10-29 — Copyright © 2021 Well-Typed LLP

Well-Typed
The Haskell Consultants

About me

▶ Master’s degree in Mathematics (University of Konstanz) 2000
▶ PhD (Utrecht University) 2004 on “Generic Haskell”
▶ Lecturer at Utrecht University 2007–2010
▶ Partner at Well-Typed 2010–now

Well-Typed

Well-Typed

▶ Founded 1998 by Duncan Coutts, Ian Lynagh, and Björn Bringert.
▶ Haskell consulting (development, advice, support, training).
▶ Currently∼20 people working full-time in Europe, USA, Canada.
▶ Clients in various countries of the world (most work done

remotely).

Well-Typed

This talk

▶ Haskell
▶ Type system
▶ Design with types

Well-Typed

Haskell

Haskell

▶ Is a standardized language.
▶ Designed by committee, actually designed by the community.
▶ First version 1990.
▶ Usable, stable version: Haskell 1998.
▶ Current standard: Haskell 2010 (but many extensions in active

use).
▶ Main implementation: GHC (Glasgow Haskell Compiler) – Simon

Peyton Jones at Microsoft Research Cambridge and many
contributors, including several people from Well-Typed.

Well-Typed

Haskell features

Technical:

▶ easy to define datatypes
▶ high abstraction level
▶ strong type system
▶ separation of effectful and pure computations
▶ very versatile

Social:

▶ large helpful community
▶ culture of solving problems properly
▶ open-source (BSD) by default
▶ vast amount of libraries in central repository (Hackage)

Well-Typed

Abstraction

C / Java
int total = 0;
for (int i = 0; i < lst.length; i ++) {
total = total + 3 * lst[i];

}

Haskell
total = sum (map (3 *) lst)

Functions such as sum or map are normal library functions, it’s easy
to define your own variants.

Example taken from Brent Yorgey’s UPenn Haskell intro.

Well-Typed

Abstraction

C / Java
int total = 0;
for (int i = 0; i < lst.length; i ++) {
total = total + 3 * lst[i];

}

Haskell
total = sum (map (3 *) lst)

Functions such as sum or map are normal library functions, it’s easy
to define your own variants.

Example taken from Brent Yorgey’s UPenn Haskell intro.

Well-Typed

Static types with type inference

▶ Haskell is statically typed.
▶ Type errors are reported at compile time.
▶ Type annotations are mostly optional and can be inferred.
▶ Support for polymorphism.

Example:

Well-Typed

Static types with type inference

▶ Haskell is statically typed.
▶ Type errors are reported at compile time.
▶ Type annotations are mostly optional and can be inferred.
▶ Support for polymorphism.

Example:

test (p, x) =
if
p x

then
x

else
0

Well-Typed

Static types with type inference

▶ Haskell is statically typed.
▶ Type errors are reported at compile time.
▶ Type annotations are mostly optional and can be inferred.
▶ Support for polymorphism.

Example:
test :: (Int -> Bool, Int) -> Int -- inferred if not specified
test (p, x) =
if
p x

then
x

else
0

Well-Typed

Effects

C / Java
int add0(int x, int y) {
return x + y;

}

int add1(int x, int y) {
launch_missiles(now);
return x + y;

}

Both functions have the same type!

Well-Typed

Effects

C / Java
int add0(int x, int y) {
return x + y;

}

int add1(int x, int y) {
launch_missiles(now);
return x + y;

}

Both functions have the same type!

Well-Typed

Effects

C / Java
int add0(int x, int y) {
return x + y;

}

int add1(int x, int y) {
launch_missiles(now);
return x + y;

}

Both functions have the same type!

Well-Typed

Effects

Haskell
add0 :: Int -> Int -> Int
add0 x y = x + y

add1 :: Int -> Int -> IO Int
add1 x y = launch_missiles >> return (x + y)

Effectful computations are tagged by the type system!

Well-Typed

Effects

Haskell
add0 :: Int -> Int -> Int
add0 x y = x + y

add1 :: Int -> Int -> IO Int
add1 x y = launch_missiles >> return (x + y)

Effectful computations are tagged by the type system!

Well-Typed

Effects

Haskell
add0 :: Int -> Int -> Int
add0 x y = x + y

add1 :: Int -> Int -> IO Int
add1 x y = launch_missiles >> return (x + y)

Effectful computations are tagged by the type system!

Well-Typed

Being explicit

By marking the presence of side effects explicitly with IO , the
absence of such a marker guarantees that a piece of code is definitely
free of side effects.

Well-Typed

Effects in Haskell’s types

Fine-grained control about effects by choosing the right type:

A some type, no effect
IO A IO, exceptions, random numbers, concurrency, . . .
Gen A random numbers only
ST s A mutable variables only
STM A software transactional memory log variables only
State s A (persistent) state only
Error A exceptions only
Signal A time-changing value

New effect types can be defined. Effects can be combined.

Well-Typed

User-defined datatypes

(Record) Types

data Point a = MkP {px :: a, py :: a}

p1 :: Point Int
p1 = MkP {px = 3, py = 5}

p2 = MkP 3 5

p3 :: Point Double
p3 = MkP {px = 2.5, py = 7.3}

Well-Typed

(Record) Types

data Point a = MkP {px :: a, py :: a}

p1 :: Point Int
p1 = MkP {px = 3, py = 5}

p2 = MkP 3 5

p3 :: Point Double
p3 = MkP {px = 2.5, py = 7.3}

Well-Typed

(Record) Types

data Point a = MkP {px :: a, py :: a}

p1 :: Point Int
p1 = MkP {px = 3, py = 5}

p2 = MkP 3 5

p3 :: Point Double
p3 = MkP {px = 2.5, py = 7.3}

Well-Typed

(Record) Types

data Point a = MkP {px :: a, py :: a}

p1 :: Point Int
p1 = MkP {px = 3, py = 5}

p2 = MkP 3 5

p3 :: Point Double
p3 = MkP {px = 2.5, py = 7.3}

Well-Typed

(Enumeration) Types

data Direction = North | West | South | East

data Tetromino = I | O | T | S | Z | J | L

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su

renderWeekday :: Weekday -> String
renderWeekday wd =
case wd of
Mo -> "Monday"
Tu -> "Tuesday"
We -> "Wednesday"
Th -> "Thursday"
Fr -> "Friday"
Sa -> "Saturday"
Su -> "Sunday"

Well-Typed

(Enumeration) Types

data Direction = North | West | South | East

data Tetromino = I | O | T | S | Z | J | L

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su

renderWeekday :: Weekday -> String
renderWeekday wd =
case wd of
Mo -> "Monday"
Tu -> "Tuesday"
We -> "Wednesday"
Th -> "Thursday"
Fr -> "Friday"
Sa -> "Saturday"
Su -> "Sunday"

Well-Typed

Domain-specific Booleans

generateReport ::
(Bool, Bool, InputData) -> Report

data Logging = EnableLogging | DisableLogging
data Verbosity = IncludeExplanations | Regular

generateReport ::
(Logging, Verbosity, InputData) -> Report

Well-Typed

Domain-specific Booleans

generateReport ::
(Bool, Bool, InputData) -> Report

data Logging = EnableLogging | DisableLogging
data Verbosity = IncludeExplanations | Regular

generateReport ::
(Logging, Verbosity, InputData) -> Report

Well-Typed

Domain-specific “Booleans”

data Logging = EnableLogging | DisableLogging
data Debug = DebugOff | DebugOn
data Verbosity = IncludeExplanations | Regular

generateReport ::
(Logging, Debug, Verbosity, InputData) -> Report

What about this combination?
DebugOn
DisableLogging

Well-Typed

Domain-specific “Booleans”

data Logging = EnableLogging | DisableLogging
data Debug = DebugOff | DebugOn
data Verbosity = IncludeExplanations | Regular

generateReport ::
(Logging, Debug, Verbosity, InputData) -> Report

What about this combination?
DebugOn
DisableLogging

Well-Typed

Domain-specific “Booleans”

data LogLevel = None | Normal | Debug

data Verbosity = IncludeExplanations | Regular

generateReport ::
(LogLevel, Verbosity, InputData) -> Report

Well-Typed

Optionality

data Talk =
MkTalk

{ title :: String
, speaker :: String
, abstract :: String
, duration :: Int
}

Rule

“For each talk, we need to know the title, the name of the speaker, and
optionally an abstract and an estimated duration in minutes.”

Well-Typed

Optionality

data Talk =
MkTalk

{ title :: String
, speaker :: String
, abstract :: String
, duration :: Int
}

Rule

“For each talk, we need to know the title, the name of the speaker, and
optionally an abstract and an estimated duration in minutes.”

Well-Typed

Optionality

data Talk =
MkTalk

{ title :: String
, speaker :: String
, abstract :: String
, duration :: Int
}

Rule

“For each talk, we need to know the title, the name of the speaker, and
optionally an abstract and an estimated duration in minutes.”

Well-Typed

Expressing optionality
data Maybe a =

Nothing
| Just a

Well-Typed

Expressing optionality
data Maybe a =

Nothing
| Just a

Values of type Int :

...
-3
-2
-1
0
1
2
3
...

Well-Typed

Expressing optionality
data Maybe a =

Nothing
| Just a

Values of type Maybe Int :

Nothing

...
Just (-3)
Just (-2)
Just (-1)
Just 0
Just 1
Just 2
Just 3
...

Well-Typed

Applying optionality

data Talk =
MkTalk

{ title :: String
, speaker :: String
, abstract :: String
, duration :: Int
}

Well-Typed

Applying optionality

data Talk =
MkTalk

{ title :: String
, speaker :: String
, abstract :: Maybe String
, duration :: Maybe Int
}

Well-Typed

Being explicit

By marking the presence of optionality with Maybe , the absence of
such a marker guarantees that a value is definitely there.

Well-Typed

Maybe versus null

In languages with null ,

▶ nearly everything can be null ,
▶ we can never be certain something is not null ,
▶ is is easy to forget to check for null .

By using Maybe ,

▶ we know for certain whether a value is optional or not,
▶ the type system forces us to handle the Nothing case,

▶ we do not have to worry about Nothing for non-optional values.

Well-Typed

Maybe versus null

In languages with null ,

▶ nearly everything can be null ,
▶ we can never be certain something is not null ,
▶ is is easy to forget to check for null .

By using Maybe ,

▶ we know for certain whether a value is optional or not,
▶ the type system forces us to handle the Nothing case,

▶ we do not have to worry about Nothing for non-optional values.

Well-Typed

Allowing multiple occurrences

data Talk =
MkTalk

{ title :: String
, speaker :: String
, abstract :: Maybe String
, duration :: Maybe Int
}

What if we want to allow multiple speakers?

Well-Typed

Allowing multiple occurrences

data Talk =
MkTalk

{ title :: String
, speakers :: List String
, abstract :: Maybe String
, duration :: Maybe Int
}

Well-Typed

Allowing multiple occurrences

data Talk =
MkTalk

{ title :: String
, speakers :: [String] -- special syntax for lists
, abstract :: Maybe String
, duration :: Maybe Int
}

Lists can have arbitrarily many elements.

Examples:

[]
["Andres"]
["Edsko", "Thomas", "Adam"]

Do we really want to allow talks with 0 speakers?

Well-Typed

Allowing multiple occurrences

data Talk =
MkTalk

{ title :: String
, speakers :: [String] -- special syntax for lists
, abstract :: Maybe String
, duration :: Maybe Int
}

Lists can have arbitrarily many elements.

Examples:

[]
["Andres"]
["Edsko", "Thomas", "Adam"]

Do we really want to allow talks with 0 speakers?

Well-Typed

Allowing multiple occurrences

data Talk =
MkTalk

{ title :: String
, speakers :: [String] -- special syntax for lists
, abstract :: Maybe String
, duration :: Maybe Int
}

Lists can have arbitrarily many elements.

Examples:

[]
["Andres"]
["Edsko", "Thomas", "Adam"]

Do we really want to allow talks with 0 speakers?
Well-Typed

Allowing multiple occurrences

data Talk =
MkTalk

{ title :: String
, primarySpeaker :: String
, otherSpeakers :: [String]
, abstract :: Maybe String
, duration :: Maybe Int
}

Well-Typed

Allowing multiple occurrences

data Talk =
MkTalk

{ title :: String
, speakers :: NonEmptyList String
, abstract :: Maybe String
, duration :: Maybe Int
}

data NonEmptyList a =
MkNonEmptyList

{ first :: a
, others :: [a]
}

Well-Typed

More concepts: a choice between two types

data Either a b =
Left a

| Right b

A value of type Either Int String is

▶ either an Int (tagged with Left)
▶ or a String (tagged with Right).

Well-Typed

More concepts: one or the other or both

data OneOrBoth a b =
OnlyLeft a

| OnlyRight b
| Both a b

A value of type OneOrBoth Int String is

▶ either just an Int (tagged with OnlyLeft)

▶ or just a String (tagged with OnlyRight)

▶ or both an Int and a String (tagged with Both).

Well-Typed

Intermediate summary

▶ Datatypes such as Maybe , lists, NonEmptyList , Either or

OneOrBoth allow us to be very precise in what is expected.
▶ Unexpected configurations are not representable.
▶ These types are not built-in, and therefore new concepts can be

added with ease.
▶ The type language is compositional.

Well-Typed

Precision?

data User =
MkUser

{ userEmail :: String
, isVerified :: Bool
, verifiedByPassport :: Bool -- otherwise driver’s license
, idDocumentNumber :: String
}

▶ Is any string an email address?
▶ What status can a user really be in?
▶ Should name and document number have the same type?
▶ What to put in document number for unverified users?
▶ Different formats for passport and driver’s license numbers.

Well-Typed

Precision?

data User =
MkUser

{ userEmail :: String
, isVerified :: Bool
, verifiedByPassport :: Bool -- otherwise driver’s license
, idDocumentNumber :: String
}

▶ Is any string an email address?
▶ What status can a user really be in?
▶ Should name and document number have the same type?
▶ What to put in document number for unverified users?
▶ Different formats for passport and driver’s license numbers.

Well-Typed

Introducing an explicit status type

data UserStatus =
Unverified

| VerifiedByPassport
| VerifiedByDriversLicense

Well-Typed

Introducing an explicit status type

data UserStatus =
Unverified

| VerifiedByPassport
| VerifiedByDriversLicense

data User =
MkUser

{ userEmail :: String
, userStatus :: UserStatus
, idDocumentNumber :: String
}

Well-Typed

Introducing an explicit status type

data UserStatus =
Unverified

| VerifiedByPassport String
| VerifiedByDriversLicense String

data User =
MkUser

{ userEmail :: String
, userStatus :: UserStatus
}

Well-Typed

Introducing an explicit status type

data UserStatus =
Unverified

| VerifiedByPassport PassportNumber
| VerifiedByDriversLicense DriversLicenseNumber

data User =
MkUser

{ userEmail :: String
, userStatus :: UserStatus
}

data PassportNumber = MkPassportNumber String
data DriversLicenseNumber = MkDriversLicenseNumber String

Well-Typed

Introducing an explicit status type

data UserStatus =
Unverified

| VerifiedByPassport PassportNumber
| VerifiedByDriversLicense DriversLicenseNumber

data User =
MkUser

{ userEmail :: EmailAddress
, userStatus :: UserStatus
}

data PassportNumber = MkPassportNumber String
data DriversLicenseNumber = MkDriversLicenseNumber String
data EmailAddress = MkEmailAddress String

Well-Typed

Working with a user status

data UserStatus =
Unverified

| VerifiedByPassport PassportNumber
| VerifiedByDriversLicense DriversLicenseNumber

someFunction ... =
...
case userStatus of
Unverified -> ...
VerifiedByPassport passportNumber -> ...
VerifiedByDriversLicense dlNumber -> ...

We cannot even access a PassportNumber unless we are in the right
case!

Well-Typed

Working with a user status

data UserStatus =
Unverified

| VerifiedByPassport PassportNumber
| VerifiedByDriversLicense DriversLicenseNumber

someFunction ... =
...
case userStatus of
Unverified -> ...
VerifiedByPassport passportNumber -> ...
VerifiedByDriversLicense dlNumber -> ...

We cannot even access a PassportNumber unless we are in the right
case!

Well-Typed

Working with a user status

data UserStatus =
Unverified

| VerifiedByPassport PassportNumber
| VerifiedByDriversLicense DriversLicenseNumber

someFunction ... =
...
case userStatus of
Unverified -> ...
VerifiedByPassport passportNumber -> ...
VerifiedByDriversLicense dlNumber -> ...

We cannot even access a PassportNumber unless we are in the right
case!

Well-Typed

Distinguishing types with the same representation

data PassportNumber = MkPassportNumber String
data DriversLicenseNumber = MkDriversLicenseNumber String
data EmailAddress = MkEmailAddress String

data URL = MkURL String
data SQLQuery = MkSQLQuery String
data HTML = MkHTML String

data UserId = MkUserId Int
data Age = MkAge Int
data Quantity = MkQuantity Int
data Score = MkScore Int

data Distance = MkDistance Double
data Temperature = MkTemperature Double
...

Well-Typed

Distinguishing types with the same representation

data PassportNumber = MkPassportNumber String
data DriversLicenseNumber = MkDriversLicenseNumber String
data EmailAddress = MkEmailAddress String

data URL = MkURL String
data SQLQuery = MkSQLQuery String
data HTML = MkHTML String

data UserId = MkUserId Int
data Age = MkAge Int
data Quantity = MkQuantity Int
data Score = MkScore Int

data Distance = MkDistance Double
data Temperature = MkTemperature Double
...

Well-Typed

Distinguishing types with the same representation

data PassportNumber = MkPassportNumber String
data DriversLicenseNumber = MkDriversLicenseNumber String
data EmailAddress = MkEmailAddress String

data URL = MkURL String
data SQLQuery = MkSQLQuery String
data HTML = MkHTML String

data UserId = MkUserId Int
data Age = MkAge Int
data Quantity = MkQuantity Int
data Score = MkScore Int

data Distance = MkDistance Double
data Temperature = MkTemperature Double
...

Well-Typed

Validation

validateEmailAddress :: String -> Maybe EmailAddress
validateEmailAddress string =
if
matchesEmailRedex string

then
Just (MkEmailAddress string)

else
Nothing

We are in control of the interface:

▶ Make MkEmailAddress private.
▶ Now validateEmailAddress is the only way to produce a

value of type EmailAddress .

Well-Typed

Validation

validateEmailAddress :: String -> Maybe EmailAddress
validateEmailAddress string =
if
matchesEmailRedex string

then
Just (MkEmailAddress string)

else
Nothing

We are in control of the interface:

▶ Make MkEmailAddress private.
▶ Now validateEmailAddress is the only way to produce a

value of type EmailAddress .

Well-Typed

Effectful two-step verification

data PassportNumber = MkPassportNumber String

validatePassportNumber :: String -> Maybe PassportNumber

data VerifiedPassportNumber =
MkVerifiedPassportNumber

{ passportNumber :: PassportNumber
, verificationTransactionId :: TransactionId
}

passportVerificationService ::
PassportNumber -> IO (Maybe VerifiedPassportNumber)

Well-Typed

Effectful two-step verification

data PassportNumber = MkPassportNumber String

validatePassportNumber :: String -> Maybe PassportNumber

data VerifiedPassportNumber =
MkVerifiedPassportNumber

{ passportNumber :: PassportNumber
, verificationTransactionId :: TransactionId
}

passportVerificationService ::
PassportNumber -> IO (Maybe VerifiedPassportNumber)

Well-Typed

Witnesses for successful (or unsuccessful) tests

function x =
if
someTest x

then
doThis x

else
doThat x

someTest :: Item -> Bool
doThis :: Item -> Result
doThat :: Item -> Result

Well-Typed

Witnesses for successful (or unsuccessful) tests

function x =
if
someTest x

then
doThis x

else
doThat x

someTest :: Item -> Bool
doThis :: Item -> Result
doThat :: Item -> Result

Well-Typed

Witnesses for successful (or unsuccessful) tests

function x =
case
someTest x

of
Just y -> doThis y
Nothing -> doThat x

someTest :: Item -> Maybe ValidatedItem
doThis :: ValidatedItem -> Result
doThat :: Item -> Result

Well-Typed

What if the model evolves?

We can always change the types without fear:

▶ the more precise our types are, the better the compiler errors we
will get,

▶ we can make local changes to the code to fix all the type errors,
▶ after fixing the errors, there is a good chance the program still

passes all tests.

▶ Refactoring is easy.
▶ Static types are good for rapid prototyping.

Well-Typed

What if the model evolves?

We can always change the types without fear:

▶ the more precise our types are, the better the compiler errors we
will get,

▶ we can make local changes to the code to fix all the type errors,
▶ after fixing the errors, there is a good chance the program still

passes all tests.

▶ Refactoring is easy.
▶ Static types are good for rapid prototyping.

Well-Typed

Conclusions

▶ Types are easy to define.
▶ Types give us a way to exchange programming language terms for

domain-specific terms.
▶ We control the interface for new types. They do not support any

operations we do not explicitly enable.
▶ We can represent data models but also business logic by using

types.
▶ When writing programs, types then guide the coding.
▶ Refactoring is easy.

Well-Typed

