Abstraction and program design,
or the power of parametricity

BOB 2025

Andres Loh
2025-03-14

= Well-Typed

The Haskell Consultants




(Int, Int) -> (Int, Int)

= Well-Typed



(a, a) -> (a, a)

= Well-Typed



(a, b) -> (b, a)

= Well-Typed



Parametric polymorphism, informally

A function is parametrically polymorphic in a type variable if it
behaves the same regardless of instantiation of the type variable.

= Well-Typed



Parametric polymorphism, informally

A function is parametrically polymorphic in a type variable if it
behaves the same regardless of instantiation of the type variable.

Parametricity then refers to us being able to make (non-trivial)
statements about programs by knowing nothing more than their type.

= Well-Typed



m .
etricity, formall
y

T\\cm'cn\s for free!

\)\n\x\)\ adler
Un \wusx‘w of G 1asgOW

Y\mcnon code
e ASCH €

“har
. Ther W

of A and TA A

o have

Ly AT the

code‘ \nuls:um
\99,98 9
reverseint {cndé' fas BRI
‘heorer r may mctio?
hat TEUT s all Hut \\\E f \emm\\
e § tion € , Int W That
Then W€ have

\;3 : 4\

nc” (tailmt i,

e 2 12 WellTyped



Parametricity, formally

Not the focus of today'’s talk.

= Well-Typed



What is the focus?

» Parametric polymorphism grants us practical reasoning
capabilities.
» Abstraction can make programs easier to understand.

» Parametric polymorphism can help us design better programs.

= Well-Typed



Good abstraction / bad abstraction



Bad abstraction?

class Transform a where
transform :: a -> a

instance Transform Int where
transform :: Int -> Int
transform i =i + 1

instance Transform String where
transform :: String -> String
transform s = map toUpper s

= Well-Typed



Bad abstraction?

class Transform a where
transform :: a -> a

instance Transform Int where
transform :: Int -> Int
transform i =i + 1

instance Transform String where
transform :: String -> String
transform s = map toUpper s

Rule of thumb

Overuse of ad-hoc polymorphism makes programs harder to
understand.

= Well-Typed



On the other hand ...

f1 :: a->a
VS.

f2 :: Int -> Int
f3 :: String -> String

= Well-Typed



On the other hand ...

f1 :: a->a
VS.
f2 :: Int -> Int

f3 :: String -> String

Rule of thumb

Judicious use of parametric polymorphism makes programs easier to
understand.

= Well-Typed



When can we rely on parametricity?

» No run-time type information.

= Well-Typed



When can we rely on parametricity?

» No run-time type information.

» As much as possible, restricted side effects.

= Well-Typed



When can we rely on parametricity?

» No run-time type information.

» As much as possible, restricted side effects.
» Even in Haskell, we have to consider the presence of crashing and

looping computations, and we cannot make statements about
performance.

= Well-Typed



More examples



(b -> c)
-> (a -> b)
-> a

= Well-Typed



String -> a

= Well-Typed



String -> a

Exception e => e -> I0 a

= Well-Typed



(a -=> b)
-> [a]
-> [b]

= Well-Typed



f:: (@a->b) ->[a] -> [b]

= Well-Typed



f:: (@a->b) ->[a] -> [b]

» We must produce b s.

= Well-Typed



f:: (a->b) ->[a] -> [b]

» We must produce b s.

» We can only obtain b s by applying the function.

= Well-Typed



f:: (@a->b) ->[a] -> [b]

» We must produce b s.
» We can only obtain b s by applying the function.

» We can only apply the function if we have as.

= Well-Typed



f:: (@a->b) ->[a] -> [b]

v

We must produce b s.

v

We can only obtain b s by applying the function.

v

We can only apply the function if we have a s.

v

We can only obtain a s from the list.

= Well-Typed



f:: (@a->b) ->[a] -> [b]

v

We must produce b s.

v

We can only obtain b s by applying the function.

v

We can only apply the function if we have a s.

v

We can only obtain a s from the list.

v

What can we say about f [17?

= Well-Typed



f:: (@a->b) ->[a] -> [b]

» We must produce b s.
» We can only obtain b s by applying the function.
» We can only apply the function if we have as.

» We can only obtain a s from the list.

» What can we say about f []7?
(Mustbe [ 1))

» What can we say about f (x 2)?

= Well-Typed



f:: (@a->b) ->[a] -> [b]

» We must produce b s.
» We can only obtain b s by applying the function.
» We can only apply the function if we have as.

» We can only obtain a s from the list.

» What can we say about f []7?
(Mustbe [ 1))

» What can we say about f (x 2)?
(Must produce a list of even numbers.)

» Iff id [1, 2, 31 is[3, 1], thenwhat can we say about
f g [xi, x2, x317?

= Well-Typed



f:: (@a->b) ->[a] -> [b]

» We must produce b s.
» We can only obtain b s by applying the function.
» We can only apply the function if we have as.

» We can only obtain a s from the list.

» What can we say about f []7?
(Mustbe [ 1))

» What can we say about f (x 2)?
(Must produce a list of even numbers.)

» Iff id [1, 2, 31 is[3, 1], thenwhat can we say about
fg [x, x2, x31?
(Must produce [g x3, & X11].)

= Well-Typed



f :: (a -> Bool) -> [a] -> [a]

= Well-Typed



f :: (a -> Bool) -> [a] -> [a]

» We must produce as.

= Well-Typed



f :: (a -> Bool) -> [a] -> [a]

» We must produce as.

» We can only obtain a s from the list.

= Well-Typed



f :: (a -> Bool) -> [a] -> [a]

» We must produce as.
» We can only obtain a s from the list.

» We can take the result of the function into account...

= Well-Typed



f :: (a -> Maybe b) -> [a] -> [b]

= Well-Typed



f :: (a -> Maybe b) -> [a] -> [b]

» We must produce b s.

= Well-Typed



f :: (a -> Maybe b) -> [a] -> [b]

» We must produce b s.

» We can only obtain b s by applying the function (and if the test
succeeds).

= Well-Typed



f :: (a -> Maybe b) -> [a] -> [b]

» We must produce b s.

» We can only obtain b s by applying the function (and if the test
succeeds).

» We can only apply the function if we have a s.

= Well-Typed



f :: (a -> Maybe b) -> [a] -> [b]

v

We must produce b s.

v

We can only obtain b s by applying the function (and if the test
succeeds).

v

We can only apply the function if we have a s.

v

We can only obtain a s from the list.

= Well-Typed



Making type signatures more informative

f :: (a -> Bool) -> [a] -> [a]
V.

f :: (a -> Maybe b) -> [a] -> [b]

= Well-Typed



Making type signatures more informative

f :: (a -> Bool) -> [a] -> [a]
V.

f :: (a -> Maybe b) -> [a] -> [b]

Similarly

g :: (a ->Bool) -> ([a], [al)
vs.

g :: (a -> Either b ¢) -> ([b1, [c1)

= Well-Typed



I0 a

-> (a -> I0 b)
-> (a -> I0 ¢)
-> JI0 ¢

= Well-Typed



Conclusions

Parametrically polymorphic types tell you more than you might
think.

Functions become easier to understand.

v

v

We can try to exploit that when designing our own libraries.

v

All this is not generally true for abstraction based on ad-hoc
polymorphism / type classes, type families, ...

v

= Well-Typed



