
Staged Sums of Products
Matthew Pickering

Department of Computer Science
University of Bristol
United Kingdom

matthew.pickering@bristol.ac.uk

Andres Löh
Well-Typed LLP

andres@well-typed.com

Nicolas Wu
Department of Computing
Imperial College London

United Kingdom
n.wu@imperial.ac.uk

Abstract
Generic programming libraries have historically traded effi-
ciency in return for convenience, and the generics-sop library
is no exception. It offers a simple, uniform, representation of
all datatypes precisely as a sum of products, making it easy
to write generic functions. We show how to finally make
generics-sop fast through the use of staging with Typed
Template Haskell.

CCS Concepts: • Software and its engineering→ Func-
tional languages.

Keywords: generic programming, staging
ACM Reference Format:
Matthew Pickering, Andres Löh, and NicolasWu. 2020. Staged Sums
of Products. In Proceedings of the 13th ACM SIGPLAN International
Haskell Symposium (Haskell ’20), August 27, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3406088.3409021

1 Introduction
The generics-sop library [de Vries and Löh 2014] organises
datatypes into a uniform and structured way: the choice of
a constructor is represented as an n-ary sum type, and each
choice contains an n-ary product representing the construc-
tor arguments. As with other generics libraries, the repre-
sentation is used to define functions that work on a large
number of datatypes by exploiting the uniform structure.
Unfortunately, like all its generic library siblings, the perfor-
mance of generated code suffers unless measures are taken
to minimize the abstraction overhead. This paper shows how
we can remove the abstraction overhead using staging.

Consider a product type such as
data Foo = Foo [Int] Ordering Text

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8050-8/20/08. . . $15.00
https://doi.org/10.1145/3406088.3409021

We can provide a Semigroup instance for such a type, relying
on the existing Semigroup instances for its components. The
semigroup operation for Foo can be defined as

sappendFoo :: Foo→ Foo→ Foo
sappendFoo (Foo is1 o1 t1) (Foo is2 o2 t2) =

Foo (is1 ⋄ is2) (o1 ⋄ o2) (t1 ⋄ t2)

This is a typical generic programming pattern: we match
on the sole constructor of a datatype, apply the semigroup
append operation (⋄) pointwise to its components, and ap-
ply the constructor again. None of this is specific to Foo; it
all works whenever we have a single-constructor datatype
where all components have the necessary Semigroup instances.

Using generics-sop, we can therefore define

gsappend :: (IsProductType a xs,All Semigroup xs) ⇒ a→ a→ a
gsappend a1 a2 = productTypeTo

(czipWithNP (Proxy @Semigroup) (mapIII (⋄))
(productTypeFrom a1) (productTypeFrom a2))

which captures exactly the pattern described above. The con-
straints state that the type a must be a single-constructor
datatype and all its components must be an instance of
Semigroup. The functions productTypeFrom and productTypeTo
match on and apply the sole constructor of the datatype,
respectively. The function czipWithNP zips together the com-
ponents pointwise, using the (⋄) function.

In order to make a type such as Foo satisfy the constraints
of the gsappend function, it must be an instance of theGeneric
class, i.e., it must be representable in the sum-of-products
style of generics-sop. Assuming such an instance exists, we
can then simply write

sappend′Foo :: Foo→ Foo→ Foo
sappend′Foo = gsappend

The function gsappend can be instantiated to any single-
constructor datatype that is an instance of Generic. Defining
functions generically makes code substantially more concise
and reduces the potential for errors. Furthermore, operations
expressed generically are more robust to change: for exam-
ple, adding or removing a field from Foo does not require
any change to the code of sappend′Foo.
However, before we start using generic programming all

over the place, we should ask: Is sappend′Foo equally fast as
sappendFoo, or do we incur an overhead for using the generic
machinery? A simple benchmark that uses both functions

https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3406088.3409021
https://hackage.haskell.org/package/generics-sop
https://doi.org/10.1145/3406088.3409021
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop

Haskell ’20, August 27, 2020, Virtual Event, USA Matthew Pickering, Andres Löh, and Nicolas Wu

to append a simple value reveals the unfortunate truth: the
generic version is roughly six times slower!
This is because productTypeFrom and productTypeTo work

by converting between the original type Foo and an isomor-
phic, yet different structural representation. Functions like
czipWithNP then traverse this structure. GHC is apparently
incapable of optimising away these transformations.

This paper explains how to reduce these overheads using
a variant of generics-sop that employs staging (via Typed
Template Haskell1). This allows gsappend to be rewritten as:

sgsappend :: (IsProductType a xs,All (Quoted Semigroup) xs) ⇒
Code a→ Code a→ Code a

sgsappend c1 c2 =
productTypeFrom c1 $ 𝜆a1 → productTypeFrom c2 $ 𝜆a2 →

productTypeTo (czipWithNP (Proxy @(Quoted Semigroup))
(mapCCC J(⋄)K) a1 a2)

The code now has traces of the different stages in both types
and terms, as can be observed by the presence ofCode,Quoted
and quotations (written J·K). We will discuss these constructs
in detail later, in Sections 3 and 4. The semantics now guar-
antee that the conversion to the structural representation
will all happen during compilation, whereas the generated
code will not mention the structural representation at all.

To instantiate this function to Foo, we write

sappend′′Foo :: Foo→ Foo→ Foo
sappend′′Foo foo1 foo2 = $$(sgsappend Jfoo1K Jfoo2K)

We use a top-level splice (written $$(·)) to trigger the gen-
eration of specialised sgsappend code for Foo at compile time.
The spliced version, sappend′′Foo, is now just as fast as the

hand-written version sappendFoo. In fact, GHC generates the
same code for both versions of function, as can be verified
using inspection-testing [Breitner 2018].
The most common approach to optimising generic pro-

grams in Haskell is to rely on GHC’s simplifier and hope that
extensive use of inlining will remove the intermediate rep-
resentations. There are two disadvantages of this approach:
first, it is fragile, as the simplifier employs heuristics and
thresholds, and it difficult to predict whether it will be suc-
cessful in eliminating all overhead in a particular use case;
second, it is costly, as inlining is not very targeted and can eas-
ily lead to huge intermediate code or repeatedly performed
work at compile time. In contrast, with staging we can se-
mantically guarantee good code, and the compile-time cost
is also predictable, making it a much more practical choice.
In the rest of this paper, we first summarise necessary

ideas of generics-sop (Section 2) and Typed Template Haskell
(Section 3). Then, the contributions of this paper are that:

1An extension of Template Haskell [Sheard and Peyton Jones 2002] that adds
types in the style of MetaML [Taha and Sheard 2000]. It was implemented
in GHC in 2013 by Geoffrey Mainland under a proposal by Simon Peyton
Jones.

• We introduce staged-sop, a staged variant of generics-sop,
and show it is a great fit for staging. The result is a library
of high-level combinators which can be used to create
generic functions with the guarantee of eliminating the
generic representation from the result. (Section 4)

• We show how to use recently proposed extensions to
Typed Template Haskell that are needed to properly deal
with class constraints [Pickering et al. 2020]. (Section 5)

• We demonstrate several examples of generic functions
in staged style, and that they typically very close to the
structure of their unstaged counterparts. (Section 6)

• We compare the performance of the unstaged and staged
versions of generics-sop. (Section 7)

Finally, we also discuss related work (Section 8) before con-
cluding (Section 9). The work in this paper is implemented as
a library called staged-sop.2 The required changes to Typed
Template Haskell are implemented in a branch of GHC 8.11.

2 Programming with Sums of Products
This section describes the original generics-sop library by
de Vries and Löh [2014], as available on Hackage.

2.1 Structurally Representable Types
The approach is based on a class Generic for structurally rep-
resentable types, two datatypes NS and NP for n-ary sums
and products, respectively, and a number of powerful combi-
nators implementing operations on such sums and products.

The class Generic looks as follows:

class Generic awhere
type Description a :: [[Type]]

from :: a→ Rep a
to :: Rep a→ a

It associates with every type a that is an instance a descrip-
tion3 which is a type-level list of lists of types, and func-
tions from and to that convert between a value of type a and
its isomorphic representation of type Rep a.
The representation of a type is defined by interpreting

the elements of the outer list in the description as choices in
an n-ary sum NS (corresponding to the constructors of the
datatype), and the elements of the inner lists in the descrip-
tion as the components of an n-ary product NP (correspond-
ing to the fields of the constructors).

As an example, let us consider binary trees:

data Tree a = Leaf a | Node (Tree a) (Tree a)

The description of binary trees is

2https://github.com/well-typed/generics-sop/tree/staged-sop
3There is a naming conflict between the fields of datatype-generic pro-
gramming and staging. A description of a type that is then interpreted is
often called a code. Likewise, staged fragments of the syntax tree are often
referred to as code. We keep Code to be a type that denotes a term to be
generated for use in a future stage, and rename the generics-sop use of
Code to Description in this paper.

https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/inspection-testing
https://hackage.haskell.org/package/generics-sop
https://github.com/well-typed/generics-sop/tree/staged-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://github.com/well-typed/generics-sop/tree/staged-sop
https://hackage.haskell.org/package/generics-sop
https://github.com/well-typed/generics-sop/tree/staged-sop
https://hackage.haskell.org/package/generics-sop

Staged Sums of Products Haskell ’20, August 27, 2020, Virtual Event, USA

type Description (Tree a) = ‘[‘[a], ‘[Tree a, Tree a]]

The outer list has two elements, one per constructor. The
first of the inner lists contains only a, for the argument of
Leaf; the other inner list contains two occurrences of Tree a,
for the two subtrees in Node.
The representation Rep is defined as follows:

type Rep a = SOP I (Description a)
newtype I a = I a
newtype SOP f xss = SOP (NS (NP f) xss)
data NS :: (a→ Type) → [a]→ Typewhere

Z :: f x→ NS f (x : xs)
S :: NS f xs→ NS f (x : xs)

data NP :: (a→ Type) → [a]→ Typewhere
Nil :: NP f ‘[]
(:∗) :: f x→ NP f xs→ NP f (x : xs)

infixr 5 :∗

An NS f is a GADT denoting an n-ary sum (i.e., a choice),
where every component is wrapped in an application of f, so
NS f ‘[x1, . . . , xn] is equivalent to f x1 + . . . + f xn.
An NP f is a GADT denoting an n-ary product (i.e., a se-

quence) where again every component is wrapped in an ap-
plication of f, so NP f ‘[x1, . . . , xn] is equivalent to f x1× . . .× f xn.

An SOP f is a newtype-wrapper around a sum of products,
and I is the identity functor. Thus Rep is just a sum of prod-
ucts. The functions from and to are the conversion functions
witnessing the isomorphism. For binary trees, from is

from :: Tree a→ Rep (Tree a)
from (Leaf a) = SOP (Z (I a :∗ Nil))
from (Node t1 t2) = SOP (S (Z (I t1 :∗ I t2 :∗ Nil)))

and to is similar. It is worth noting that the translation is shal-
low: while Tree is a recursive type, the recursive occurrences
appear in Rep (Tree a) in their original form. We only change
the top-level layer of the type. This means that from and to
are never recursive, and an instance for Generic (Tree a) can
be defined without requiring an instance Generic a.
Users do not have to write instances of Generic by hand.

Such instances can be derived automatically via (untyped)
Template Haskell or via type-level programming in terms
of the GHC-derivable GHC.Generics representation [Magal-
hães and Löh 2014].

2.2 Product Types
In the Semigroup-based example from Section 1, we have
been limiting ourselves to product types, i.e., types with a
single constructor. It is a strength of generics-sop that such
a requirement can be easily captured as a constraint on the
Description. We can define

type IsProductType a xs = (Generic a,Description a ~ ‘[xs])

to express that in order to be a product type, a has to be an
instance of Generic, and its description must have a single

entry xs, which grants us access to the types of the fields of
the sole constructor.
It is also useful to define variants of the conversion func-

tions from and to for product types that additionally perform
the (un)wrapping of the constructor:

productTypeFrom :: IsProductType a xs⇒ a→ NP I xs
productTypeFrom a = case from a of SOP (Z xs) → xs

productTypeTo :: IsProductType a xs⇒ NP I xs→ a
productTypeTo xs = to (SOP (Z xs))

Note that IsProductType a xs ensures that Description a has a
single element, so there is no way to create a valid sum via S,
and Z is the only case.

2.3 Operations on Sums and Products
Most generic functions implemented using generics-sop do
not have to make use of the constructors of NP and NS di-
rectly, but can instead be implemented in terms of various
high-level combinators provided by the library. An example
of such a combinator is czipWithNP that we used in gsappend
in order to zip together two product types in a pointwise fash-
ion. Let us first look at zipWithNP, a slightly simpler variant,
that can be defined on two NPs as follows:

zipWithNP :: (∀ x . f x→ g x→ h x) →
NP f xs→ NP g xs→ NP h xs

zipWithNP Nil Nil = Nil
zipWithNP op (f :∗ fs) (g :∗ gs) = op f g :∗ zipWithNP op fs gs

We need a rank-2-polymorphic type here, since the operator
opmust work for any choice of x. This way, we can guarantee
that it in particular works for all the elements of xs.

Inmany situations, it is useful to be able tomake additional
assumptions about the elements of x, such as that they are
all instances of a class. This is what czipWithNP allows: it
additionally takes a class argument. This class argument
has to be explicitly instantiated, as GHC’s type inference is
otherwise not clever enough to infer it. These days, that could
be done by using a plain explicit type application [Eisenberg
et al. 2016], but generics-sop chooses to instead use a proxy
argument, highlighting that explicit instantiation is required:

czipWithNP :: All c xs⇒ proxy c→
(∀ x . c x⇒ f x→ g x→ h x) → NP f xs→ NP g xs→ NP h xs

czipWithNP Nil Nil = Nil
czipWithNP p op (f :∗ fs) (g :∗ gs) = op f g :∗ czipWithNP p op fs gs

The body of the function is nearly the same. However, we
need to express as a constraint that all elements in xs satisfy
the constraint c. This is the purpose of All, which can be
defined as a type family:4

4In the actual library, All is defined as a mutually recursive type family and
type class. This allows partial parameterisation of All to just the constraint,
improves type inference, and allows attaching an induction principle for
type-level lists to the class.

https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop

Haskell ’20, August 27, 2020, Virtual Event, USA Matthew Pickering, Andres Löh, and Nicolas Wu

type family
All (f :: a→ Constraint) (xs :: [a]) :: Constraintwhere
All f ‘[] = ()
All f (x : xs) = (f x,All f xs)

If we define a trivial constraint Top as

class Top a
instance Top a

then czipWithNP (Proxy @Top) is almost the same as the un-
constrained variant; it just has the extra All Top xs constraint.5
The zipWithNP and czipWithNP functions are just two of

many functions that generics-sop provides. In general,NP is a
higher-order applicative and traversable functor [Johann and
Ghani 2007, 2009], and NS exposes a similarly rich structure.

We can now understand gsappend from Section 1:

gsappend :: (IsProductType a xs,All Semigroup xs) ⇒ a→ a→ a
gsappend a1 a2 = productTypeTo

(czipWithNP (Proxy @Semigroup) (mapIII (⋄))
(productTypeFrom a1) (productTypeFrom a2))

The arguments a1 and a2 are converted into products of type
NP I xs via productTypeFrom. These products are zipped using
czipWithNP, combining their elements with (⋄). The function

mapIII :: (a→ b→ c) → I a→ I b→ I c
mapIII op (I a) (I b) = I (op a b)

is a utility to help with the (un)wrapping of the I constructors.

3 Typed Template Haskell
In this section, we have a look at the typed fragment of
Template Haskell, which is much less widely known than its
untyped counterpart.
Despite the similarity in name, Typed Template Haskell

is rather different to Template Haskell and concerns itself
only with expressions. We cannot manipulate arbitrary syn-
tax trees, and cannot write code that generates datatypes,
classes, or other top-level declarations. We can, however,
write typed code that is staged, i.e., that can in particular
be used to generate code at compile time, and we can guar-
antee in advance that every type-correct instantiation of a
code-generating function will produce type-correct code.

In this section, we present Typed Template Haskell essen-
tially as it is implemented in GHC as of version 8.10. There
are extensions necessary to the GHC implementation for all
the work described in this paper to function, and in fact, the
work on staging generics-sop has helped identify the current
shortcomings. We describe these aspects later, in Section 5.

3.1 Quotations and Splices
The “Hello world” example of staging is a function that com-
putes the n-th power of an integer:

5The library defines SListI as a synonym for All Top, but we consistently
use All in this paper.

power :: Int→ Int→ Int
power n k | n⩽ 0 = 1

| otherwise = k ∗ power (n − 1) k

If n is statically known, such as n = 5, we might wish to
unroll the loop to produce k ∗ k ∗ k ∗ k ∗ k ∗ 1.6
We can do so by writing a staged version of power:

spower :: Int→ Code Int→ Code Int
spower n k | n⩽ 0 = J1K

| otherwise = J$$(k) ∗ $$(spower (n − 1) k)K

A Code Int is a fragment of code of type Int that we are con-
structing.7

If we have aHaskell expression e of type a, then JeK denotes
the syntax tree of e, which has type Code a.
We see such quotations on the right hand sides of the

two cases of the spower function. For example, if n ⩽ 0, we
construct the code that is the literal 1. In the other case, we
want to build a larger code fragment out of already existing
code fragments. We can do so by splicing a value x of type
Code a into a quotation by writing $$(x), where it then be-
haves as an expression of type a again. Here, we build the
multiplication of the (statically unknown) argument k with
the code resulting from the recursive invocation of spower.

3.2 Top-Level Splices
If we want to actually integrate a piece of code into a pro-
gram, we use a special form of splice that occurs outside of
a quotation. This is called a top-level splice and causes the
code to be generated at compilation time and inserted at that
point in the program.

For example, here the first argument of spower is 5:

power5 :: Int→ Int
power5 k = $$(spower 5 JkK)

Once compiled, this produces code equivalent to

power5 :: Int→ Int
power5 k = k ∗ (k ∗ (k ∗ (k ∗ (k ∗ 1))))

This code is still subject to potential further optimisation of
the compiler, as if it had been written by hand.
There is nothing else we can do with Code values but to

splice them. In general we cannot know at compilation time
what the value denoted by a piece of code is, so a Code Int
cannot be treated as an Int. If we want to do something
depending on the Int denoted by a Code Int, we have to gen-
erate a program that performs a case distinction on the un-
known value.
6Many variants of this example go further by trying to minimise the number
of multiplications needed. This does not add to the explanation of the staging
concepts, so we use the simpler example.
7In Template Haskell, Code currently has to be defined as a type synonym

type Code a = Q (TExp a)

https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop

Staged Sums of Products Haskell ’20, August 27, 2020, Virtual Event, USA

3.3 Stages
The presence of quotations and splices segregates expres-
sions into different stages, where quotations increase the
stage counter by one, and splices decrease it by one.
Conceptually, stages are running at different times, and

not all information may be present at any stage. However,
the top-level of the program is special in that it is part of the
program at any stage. This means that a top-level binding can
be used in a quotationwithout restrictions. A definition being
available at all stages is often called cross-stage persistence.

For bindings made at other places, there are more restric-
tions in place, and a program may be stage-incorrect despite
it being type-correct. As an example, consider
J𝜆x→ $$(x)K

We could give this fragment the type Code (Code a → a),
but what should it denote? We have to produce code for a
function that itself takes a code fragment and then contains
that code fragment as its body. But we do not know the
argument of the function at the point we have to construct
its code. This is because x is bound at a later stage than it is
used. This is generally forbidden and produces a stage error.
Let us discuss the situation when using a variable that is

bound at an earlier stage, as in
𝜆x→ JxK

We can look at this as a function of type a→ Code a that can
be applied to x at compile time and then has to produce code
representing x. How difficult it is to generate an abstract
syntax tree corresponding to a value of an arbitrary type
depends very much on the implementation. The situation is
reminiscent of serialising a value. We need to turn the value
into some form of reusable representation. Just like serialisa-
tion, Haskell makes the decision that this is not possible for
all types, but governed by a type class called Lift:
class Lift awhere
liftTyped :: a→ Code a

The task of liftTyped is to map a value to code representing
that value. If we have a concrete type, we can usually provide
an implementation relatively easily. For example, consider
binary trees as in Section 2:
instance Lift a⇒ Lift (Tree a) where
liftTyped (Leaf a) = JLeaf $$(liftTyped a)K
liftTyped (Node l r) = JNode $$(liftTyped l) $$(liftTyped r)K

Given the systematic nature of the code for liftTyped, it is
perhaps not surprising that the Lift type class can itself be
generically defined (similar to Show for standard human-
readable serialisation), and GHC already has functionality
to derive instances via the DeriveLift language extension.
Just as with the Show type class, there are limits: functions
as well as abstract types such as IO have no Lift instances.
Using Lift, staged code that uses variables at a later stage

than their binding occurrence is implicitly rewritten to use

liftTyped. For example, 𝜆x→JxK becomes 𝜆x→J$$(liftTyped x)K
where the use of x is at the same stage as its binding due to
the splice and quotation cancelling each other out.

3.4 Staging and Constraints
The spower example used quotations and splices on values
of monorphic types. We have not yet discussed interactions
between staging and class constraints. As we will see, that is
not entirely trivial, but we will defer the discussion until Sec-
tion 5 when we have seen examples of such cases naturally
arising in the context of staging generics-sop.

4 Staging Generic Programs
Let us now see how we can combine staging as discussed
in Section 3 with generics-sop as described in Section 2. For
this, we will revisit the example of the staged semigroup
append operation from Section 1.

4.1 Unstaged Starting Point
In the standard example of spower, the staged variant is just
an annotated version of the unstaged function power – drop-
ping all the staging annotations and identifying the types
Code a and a yields back the original program.

It is always true that this transformation of dropping the
staging annotations should recover a valid unstaged pro-
gram [Inoue and Taha 2016]. It is not always the case that
we can just drop staging annotations in the original code
to end up with a satisfactory staged version. However, the
unstaged function is almost always a good starting point. So
let us start by looking at gsappend from Section 1 again:

gsappend :: (IsProductType a xs,All Semigroup xs) ⇒ a→ a→ a
gsappend a1 a2 = productTypeTo

(czipWithNP (Proxy @Semigroup) (mapIII (⋄))
(productTypeFrom a1) (productTypeFrom a2))

Note that the type of this function, modulo constraints, is
a→ a→ a. In particular, there is no trace on the outside of
the fact that we are using the NS and NP types internally.
A simple guiding principle for the design of the staged

version of generics-sop is that the structural representation
should only occur at compile time, and we will ensure this
by staging as follows:

• In the compile time stage, the generic functions can be
instantiated to a particular type and will then generate
code specific to that type which will be executed in a
runtime stage.

• In the code fragments we generate (bymeans of quotation),
we will never mention the structural representation, but
only the original types we operate on.

While this simple principle in itself does not guarantee op-
timal code, it still goes a long way to make sure that we do
not incur overhead from the transformations between a type

https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop

Haskell ’20, August 27, 2020, Virtual Event, USA Matthew Pickering, Andres Löh, and Nicolas Wu

and its structural representation. Also, the principle has the
advantage of being easy to check.

4.2 Conversion Functions
A key issue in the design is how we change the conversion
functions from and to, as well as their product-type variants.

At first glance, the from conversion already seems to leave
us with an unsurpassable problem – expanding the Rep type
synonym, we have:

from :: Generic a⇒ a→ SOP I (Description a)

Clearly, we cannot impose the argument a to be known stat-
ically; otherwise generic functions could only ever operate
on data that is known at compilation time. But once we have

from :: Generic a⇒ Code a→ . . .

it is unclear how to continue. According to our guiding prin-
ciple, we do not want to embed the SOP type in Code, ever.
But the choice of constructor is unknown until runtime, so
how would we be able to recover that statically?
Indeed, we have to deviate from the original type here

somewhat. The choice of constructor is indeed unknown, but
the number of constructors is statically known (because the
type information is static), and if we are prepared to deal with
any choice of constructor, we can perform a dynamic pattern
match, and subsequently continue assuming we statically
know the choice of constructor.
So the idea is to have from generate code for a pattern

match and to have continuations available for each construc-
tor which pretend that the constructor is statically known.
Performing a pattern match in order to exploit static infor-
mation discovered in each branch is a common technique in
partial evaluation [Jones et al. 1993]. For us, the combination
with an advanced type system also means that the additional
information is visible in the types of the continuations.

In Section 2, we have given a definition of from for binary
trees as follows:

fromTree :: Tree a→ SOP I (Description (Tree a))
fromTree (Leaf a) = SOP (Z (I a :∗ Nil))
fromTree (Node t1 t2) = SOP (S (Z (I t1 :∗ I t2 :∗ Nil)))

Let us now rewrite this definition in continuation passing
style, also making the pattern match explicit by using case,
to prepare for staging:

from′
Tree :: Tree a→ (SOP I (Description (Tree a)) → r) → r

from′
Tree t k =

case t of
Leaf a → k (SOP (Z (I a :∗ Nil)))
Node t1 t2 → k (SOP (S (Z (I t1 :∗ I t2 :∗ Nil))))

Note how within the branches of the case, on the right hand
side, the entire sum of products structure of the value is
now statically known locally, and only the arguments to the
constructors are still dynamic information.

Now, when staging from′
Tree, we benefit from the fact that

our sum and product types are already parameterised over a
type constructor. Where we used I before, we can now use a
newtype-wrapped form of Code:

newtype C a = C (Code a)
sfromTree :: LiftT r⇒ Code (Tree a) →

(SOP C (Description (Tree a)) → Code r) → Code r
sfromTree t k =

J case $$(t) of
Leaf a → $$(k (SOP (Z (C JaK :∗ Nil))))
Node t1 t2 → $$(k (SOP (S (Z (C Jt1K :∗ C Jt2K :∗ Nil))))) K

The role of the LiftT constraint will be discussed in Section 5,
so let us focus on the implementation for now: according
to the plan, sfrom generates code for a pattern match on the
original type. Every branch has locally revealed the sum-of-
products structure of the argument, and can apply a contin-
uation that has that information available statically.

The conversion in the other direction is simpler. Given an
SOPC (Description a), we do not have to reveal more structure
and can recover Code a by applying the original constructors:

stoTree :: SOP C (Description (Tree a)) → Code (Tree a)
stoTree (SOP (Z (C a :∗ Nil))) = JLeaf $$(a)K
stoTree (SOP (S (Z (C t1 :∗ C t2 :∗ Nil)))) = JNode $$(t1) $$(t2)K

This motivates us to redefine the Generic class for staged
generic functions as follows:8

class Generic awhere
type Description a :: [[Type]]

from :: LiftT r⇒ Code a→ (Rep a→ Code r) → Code r
to :: Rep a→ Code a

type Rep a = SOP C (Description a)

Perhaps surprisingly, this already concludes the hard part
of our work. It turns out to be a blessing that our core in-
frastructure, the NP, NS and SOP types, are all parameterised
over a type constructor, and all we have done is to change
that type constructor in the representation from I to C.
The operations the library provides on these types, how-

ever, are still available, and are able to cope with the slightly
changed representations just as well. One remaining issue
we still have to discuss, however, is how exactly staging in-
teracts with polymorphism and overloading – several of the
combinators make use of abstraction over constraints, such
as czipWithNP in gsappend, and it is crucial that these can be
used in quotations.

5 Typed Template Haskell and Constraints
This section discusses the interaction of constraints, polymor-
phism, and staging in detail. As a starting point, let us focus
on a fragment that occurs in the staged function sgsappend in

8We re-use the old names from now on, e.g., we say from for the staged
version rather than sfrom.

Staged Sums of Products Haskell ’20, August 27, 2020, Virtual Event, USA

Section 1, namely the invocation of the semigroup operation
in a quotation, J(⋄)K. What is the type of this expression?

5.1 Staging in GHC 8.10
Given that the type of (⋄) is

(⋄) :: Semigroup a⇒ a→ a→ a

one might consider the following two candidate types:

J(⋄)K :: Code (Semigroup a⇒ a→ a→ a)
J(⋄)K :: Semigroup a⇒ Code (a→ a→ a)

The first of these seems innocent. However, it is an impred-
icative type: it requires instantiating the type argument of
Code to a qualified type, and GHC does not allow this.

The second is the type that GHC 8.10 infers for this code.
However, this turns out to be problematic. In order to un-
derstand why, we have to consider the implementation of
class constraints in GHC. Classes are translated into dictio-
naries. A class definition can be seen as defining an internal
record type, with the class methods being the components.
Each instance definition for the class defines a value of this
record type, or, if the instance has preconditions, it defines a
function taking other dictionaries and turning them into a
dictionary for the class in question.
Every overloaded function is then passed a dictionary

value at run-time, and invoking an overloaded function is
translated into selecting a component from such a dictionary.

But if class constraints are translated into abstracting from
and applying to dictionary arguments, then it means these
dictionaries should be subject to the stage restrictions previ-
ously discussed in Section 3.3!

Trying to make the dictionary passing explicit, we arrive
at the following ill-staged code

wrong :: Dict (Semigroup a) → Code (a→ a→ a)
wrong dict = J(⋄) dictK

Here, dict is used at a later stage than it is bound. As discussed
in Section 3.3, this situation is not completely hopeless. If
we could lift the dictionary, we would be fine. However,
dictionaries are nearly always comprised of functions, and
functions cannot be lifted in GHC.
The actual GHC implementation in 8.10 is internally un-

typed, so it will just generate the code for (⋄) and then re-
typecheck it at the splice site, reinferring the dictionary. But
this can lead to various unintended effects because the in-
stances available at the splice site can be very different from
the quotation site, as described by Pickering et al. [2019].
So using a constrained method inside a quotation can

have unintended consequences, but at least it works in most
situations. On the other hand, generating constrained poly-
morphic programs is currently impossible in GHC 8.10. Con-
sidering the running example, if we instantiate a to Maybe b,
then we would want to splice this definition at the top-level
to create a polymorphic function:

fails :: Semigroup b⇒Maybe b→Maybe b→Maybe b
fails = $$(J(⋄)K)

This program is rejected by GHC because the J(⋄)K function
has a Semigroup b constraint that it cannot solve. It is not
solved by the local Semigroup b constraint because using the
evidence from the local constraint would result in a variable
being used at a level before it was bound:
fails :: Dict (Semigroup b) →Maybe b→Maybe b→Maybe
fails dict = $$(J(⋄)K dict)

Therefore, as a sound but conservative restriction, all local
contexts are ignored when type checking a top-level splice.
This avoids the situation where a variable is used before it
is bound, but unfortunately precludes the generation of any
programs with constraints.

The ability to be precise about which stage a dictionary is
bound is necessary to relax this restriction and permit the
sound generation of constrained programs.

5.2 Quoting and Splicing Dictionaries
When the dictionaries are explicit as in wrong, the solution
to the problem with staging is obvious: dictionaries must
also be allowed to be quoted and spliced. Instead of wrong,
we can instead write
correct :: Code (Dict (Semigroup a)) → Code (a→ a→ a)
correct cdict = J(⋄) $$(cdict)K

which is stage-correct as well as type-correct.
However, it now means we have to be able to talk about

the code of dictionaries, or, translated back to the standard
implicit setting, about the code of constraints.

Therefore, we introduce a constraint form
CodeC :: Constraint→ Constraint

While Semigroup a denotes that we must have a Semigroup a
dictionary now, the constraint CodeC (Semigroup a) denotes
that we must have a Semigroup a constraint at the next stage.

For our initial example, we then obtain the type
J(⋄)K :: CodeC (Semigroup a) ⇒ Code (a→ a→ a)

from which we can clearly see that the Semigroup constraint
is required within a quotation.

The CodeC constraint is formally specified and explained
in much more detail by Pickering et al. [2020].

5.3 Lifting Type Variables
Now that we have talked about constraints, let us consider
that GHC uses a core language that is explicitly typed, and
makes type abstractions and type applications explicit by
passing types.

So whenever we use polymorphic code in quotations, we
get into similar issues with types as we have just discussed
for constraints. All named types are defined at the top-level
and cross-stage persistent, but type variables are not.

Therefore, we introduce another constraint form

Haskell ’20, August 27, 2020, Virtual Event, USA Matthew Pickering, Andres Löh, and Nicolas Wu

LiftT :: k→ Constraint

which is kind-polymorphic and arises whenever the trans-
lation of a quotation to the core language mentions a type
variable. The payload of the LiftT class is a type represen-
tation for a specific type and the logic to solve it is built
into the compiler. Similar to the Typeable [Peyton Jones et al.
2016] class, the purpose of the constraint is to turn an irrele-
vant type argument into a relevant argument which can be
manipulated. In our case, the representation is only suitable
to be inserted into a quotation by splicing and cannot be
inspected or manipulated further by users.
Our running example is polymorphic at type variable a,

and therefore the final type signature for this example is

J(⋄)K :: (CodeC (Semigroup a), LiftT a) ⇒ Code (a→ a→ a)

The extension of GHC with LiftT and CodeC constraints is
useful independently of the application to generic program-
ming, but particularly crucial for our application, because
we want to splice polymorphic and overloaded functions.

The theoretical details of these extensions are beyond the
scope of this paper and described elsewhere [Pickering et al.
2020, 2019]. Note that while CodeC constraints are fundamen-
tal, LiftT constraints are an artifact of the implementation
and can perhaps be removed in the future.

5.4 What If We Had Impredicativity?
In the beginning of this Section 5, we briefly considered the
impredicative type

J(⋄)K :: Code (Semigroup a⇒ a→ a→ a)

GHC is finally about to get a type system extension that
allows this [Serrano et al. 2020]. For our purposes, having
such types available is certainly useful. However, it cannot
replace the need for CodeC, which has the advantage of being
a first-class constraint form. It can appear in an argument
position to another type constructor, and be used in class
contexts or any place where we abstract over a constraint.
We will see some examples of this in Section 6.

6 Examples of Staged Generic Functions
We now have a library for writing staged generic functions at
our disposal: we have the modified Generic class and conver-
sion functions introduced in Section 4, and we understand
the issues concerning class constraints that may arise. All
we have to do now is to use it.

6.1 Staged Semigroup Append
Let us first revisit the example from the introduction once
again, and see how the staged version works:

sgsappend :: (IsProductType a xs,All (Quoted Semigroup) xs) ⇒
Code a→ Code a→ Code a

sgsappend c1 c2 =
productTypeFrom c1 $ 𝜆a1 → productTypeFrom c2 $ 𝜆a2 →

productTypeTo (czipWithNP (Proxy @(Quoted Semigroup))
(mapCCC J(⋄)K) a1 a2)

We are using the staged version of productTypeFrom to pat-
tern match on the sole constructor, and a1 and a2 are then of
type NP C xs, products containing code values. We use the
original czipWithNP function to zip together these products.
The new helper function

mapCCC :: Code (a→ b→ c) → C a→ C b→ C c
mapCCC op (C a) (C b) = C J($$(op) $$(a) $$(b))K

makes it easier to apply functions to code values without
having to deal with the newtype constructors. The function
we are applying is J(⋄)K, whichwe have discussed in Section 5,
and which we now know in our system to be of type

J(⋄)K :: (CodeC (Semigroup a), LiftT a) ⇒ Code (a→ a→ a)

We thus need both CodeC (Semigroup a) and LiftT a to hold
for all types a that are in the type-level list xs.

Since the combination of CodeC and LiftT is very common
in the staged generic programming context we are in, we
introduce an abbreviation:

class (CodeC (c a), LiftT a) ⇒Quoted c a
instance (CodeC (c a), LiftT a) ⇒Quoted c a

Consequently, we use Quoted Semigroup to instantiate the
czipWithNP function, and therefore the constraint also ap-
pears in the type signature of the function.

6.2 Instantiating and Observing the Generated Code
If we want to instantiate sgsappend at a concrete type such
as Foo, we use a top-level splice:

sappend′′Foo :: Foo→ Foo→ Foo
sappend′′Foo foo1 foo2 = $$(sgsappend Jfoo1K Jfoo2K)

The constraints arising from sgsappend are easily discharged:
the All (Quoted Semigroup) xs constraint from the quotation
means the Semigroup constraints for the component types of
Foo at the splice site must be satisfied – and they are. And
LiftT constraints are always satisfiable when splicing.
We can instruct GHC to show us the generated code by

passing the -ddump-splices or -ddump-simpl flags. In our
extended version, GHC always shows generated code in the
Core language, but abstracting from that, the code shown is
equivalent to

case foo1 of {Foo x1 x2 x3 →
case foo2 of {Foo y1 y2 y3 →

((Foo ((⋄) x1 y1)) ((⋄) x2 y2)) ((⋄) x3 y3) } }

This is exactly what we would expect and hope for. All the
conversion to structural types happens at compile time; the
only code we construct are the applications of (⋄) to their
arguments (explicitly via the mapCCC call), the application of
Foo (via productTypeTo) and the pattern matches on foo1 and
foo2 (via productTypeFrom).

Staged Sums of Products Haskell ’20, August 27, 2020, Virtual Event, USA

Ahand-written version of semigroup append for Foowould
result in the same code, as can be observed by writing it
manually and applying inspection-testing to compare the
generated Core code automatically.

Reflecting on this, it should be obvious from the definition
we have given, because as we promised when we set out to
stage generic functions in Section 4.1, we can easily see that
no traces of the intermediate representation exist at runtime.
All library functions adhere to this guideline, and the only
user-supplied quotation we use creates applications of (⋄).

6.3 Equality
Next to the Semigroup example we have already seen, we can
easily extend staging to Monoid or apply it to other standard
examples for generic programming, such as NFData (to com-
pletely force a value), or GHC’s stock derivable classes, for
example Bounded, Enum, Eq or Ord.
As one representative, let us look at equality. The un-

staged variant is simple to write, shifting the bulk of the
work to ccompareSOP, another of the various utility functions
provided by generics-sop:

geq :: (Generic a,All (All Eq) (Description a)) ⇒ a→ a→ Bool
geq a1 a2 = ccompareSOP (Proxy @Eq)

False
(𝜆xs1 xs2 → and (collapseNP
(czipWithNP (Proxy @Eq) (mapIIK (= =)) xs1 xs2)))

False (from a1) (from a2)

If the constructors do not match in either direction, we re-
turn False; otherwise, the constructor arguments are type-
compatible and can be compared pointwise using (= =).
It is easy enough to come up with a staged variant based

on the above, following exactly the same strategy the we
have seen so far:

sgeq :: (Generic a,All (All (Quoted Eq)) (Description a)) ⇒
Code a→ Code a→ Code Bool

sgeq c1 c2 = from c1 $ 𝜆a1 → from c2 $ 𝜆a2 →
ccompareSOP (Proxy @(Quoted Eq))

JFalseK
(𝜆xs1 xs2 → sand (collapseNP

(czipWithNP (Proxy @(Quoted Eq))
(mapCCK J(= =)K) xs1 xs2)))

JFalseK a1 a2
sand :: [Code Bool] → Code Bool
sand = foldr (𝜆x r→ J$$(x) && $$(r)K) JTrueK

We see the expected changes: switching to the continuation-
passing style for the from functions, parameterising over
Quoted Eq rather than Eq, and quoting False and (= =).

At the point where we apply and in the original function,
we are operating on a static list of Code Bool values, which
are processed using a staged version of and that inserts the
code for && between the elements. Strictly speaking, this
will not exactly generate the code we would have written by

hand, because we would not add an additional conjunction
with True when reaching the end of the list except if the list
is empty to start with. This could easily be fixed by using a
slightly different traversal than foldr or the more advanced
technique of partially-static datatype [Yallop et al. 2018],
but it is also quite clearly in the realm of GHC’s optimising
capabilities, so in this case, it is not worth worrying about.
A more substantial problem is that the code size of the

generated code is quadratic. The nested use of from on the
two arguments creates a nested case that has cases for all
possible combinations of constructors. On the other hand,
a manually written equality function can do with a linear
number of cases, for example:

eqTree :: (Eq a, Eq (Tree a)) ⇒ Tree a→ Tree a→ Bool
eqTree (Leaf a1) (Leaf a2) = a1 = = a2
eqTree (Node l1 r1) (Node l2 r2) = l1 = = l2 && r1 = = r2
eqTree = False

In practice, GHC’s optimiser will also do a good job here
in collapsing the unnecessary cases again, but we still have
quadratic code size at an intermediate stage, which might
become worrying for large datatypes.
A proper solution for this is possible, but we leave the

details to future work and only sketch it here: a weakness
of our current library is that we cannot ever generate par-
tial pattern matches on the source type, because our only
function for matching is from, and it will always consider all
cases. Since Typed Template Haskell is still based on normal
(untyped) Template Haskell, we can use that to implement
new typed “primitives”, including one that would allow us
to select which cases we want to generate (and would need
a default branch in case none of the selected cases match).
We could use this to define a generalised version of from
that could take its local knowledge into account to decide on
which of the constructors of the source datatype it wants to
match. Such a generalised from could then be used to improve
staged equality further.

6.4 Metadata and Customisation
Another common application area of generic programming
are serialisation and deserialisation functions, among them
classes such as Read and Show, that use metadata from the
datatype, such as constructor or record field names, in order
to come up with a human-readable representation.
The generics-sop library makes metadata available via a

separate type classHasDatatypeInfo and exposes themetadata
using sums and products, thereby ensuring that its shape
matches that of the datatype itself. This just transfers to the
staged setting without any changes.
A nice side effect of this approach is that we can apply

non-standard customisation data to a generic function using
sums and products, and can still guaranteee that they have
the correct shape. Here is an example of a simple show-like
function that only works on enumeration types (types where

https://hackage.haskell.org/package/inspection-testing
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop

Haskell ’20, August 27, 2020, Virtual Event, USA Matthew Pickering, Andres Löh, and Nicolas Wu

none of the constructors have any arguments), and uses user-
supplied strings instead of the normal constructor names:

gshowEnum ::
IsEnumType a⇒ NP (K String) (Description a) → a→ String

gshowEnum names a =

collapseNS (selectWithNS const names (enumTypeFrom a))

Using enumTypeFrom, we convert the original value into a
sum. We use this sum to select one of the provided String
values from the product of names – the types ensure that
the product has the correct number of components. The
function selectWithNS performs this selection and hands us
back another sum, with the payload being just the name
(because the combining function is const). Finally, collapseNS
extracts the payload from the sum.

However, both standard and user-supplied metadata often
have it in common that they are actually statically known.
Nevertheless, in gshowEnum, we traverse this data at run-
time, so we are not just paying the overhead of the generic
representation, but additionally the overhead of having to
traverse statically known data dynamically.
This phenomenon is common in the wild for various

generic programming approaches. For example, the aeson
package has a genericToEncoding function that takes a record
type Options as an argument, which in most cases will con-
tain statically known information.

One mitigation strategy that is sometimes employed is to
supply such customisation data at the type-level.9 In the case
of gshowEnum, this would mean parameterising the function
with a type-level list, such as

gshowEnumT ::
IsEnumType a⇒ Proxy (symbols :: [Symbol]) → a→ String

However, we now have to use type-level constructs to prop-
agate the type-level symbols to the right place, and cannot
use our existing powerful term-level combinators. Supplying
more complicated information at the type level, and possibly
even performing additional computation on that information
statically, quickly becomes very difficult [Kiss et al. 2018].
The term-level language in Haskell is still much more pow-
erful and versatile than the type-level language, and staging
turns out to be a much better solution for making the dis-
tinction between static and dynamic information explicit.

In a manually written instantiation of gshowEnum for the
Ordering type, where for example we want to use symbolic
names for the constructors, we would do a direct mapping:

showEnumOrdering :: Ordering→ String
showEnumOrdering LT = "<"

showEnumOrdering EQ = "="

showEnumOrdering GT = ">"

9In fact, both GHC.Generics and generics-sop make the metadata addition-
ally available also on the type-level for this reason.

We would like to get the same result with the staged generic
version. When staging, we can easily indicate that the prod-
uct is supposed to be available at compile-time:

sgshowEnum :: IsEnumType a⇒
NP (K String) (Description a) → Code a→ Code String

sgshowEnum names c = enumTypeFrom c $ 𝜆a→
liftTyped (collapseNS (selectWithNS const names a))

The argument names is known statically as it is a value of type
NP rather than a value of type Code. Therefore we can use it
at compile-time in order to generate the program which will
produce a String. Apart from the pattern match introduced
by enumTypeFrom, the only code generated by this function
is by means of liftTyped, which creates a literal String value
for the selected name on the right-hand side of the case.
Therefore, we can easily match the hand-written version.

If we instantiate this function via

showEnum′
Ordering :: Ordering→ String

showEnum′
Ordering o =

$$(sgshowEnum (K "<" :∗ K "=" :∗ K ">" :∗ Nil) JoK)

we get code equivalent to showEnumOrdering. We still main-
tain the invariant that neither sums nor products appear
in generated code. And if we wanted to use the standard
constructor names after all, we could easily do that by con-
structing the argument product using the metadata functions
from generics-sop.

6.5 Parsing
Let us consider a final example from the sqlite-simple pack-
age (a straight-forward database binding) in which there is
a FromRow class that governs the marshalling from a row of
database query results to a Haskell record type.

class FromRow awhere
fromRow :: RowParser a

All we need to know about RowParser is that it is an instance
of Applicative, and that there is a function

field :: FromField a⇒ RowParser a

that we can use to construct a RowParser for the component
of a datatype as long as it is an instance of FromField.
For a concrete datatype such as

data Person = Person {personId :: Int, name :: Text, date :: Day}

we can then define a FromRow instance manually as

instance FromRow Personwhere
fromRow = Person <$> field <∗> field <∗> field

by calling field on each of the components, and applying the
constructor in an applicative context.

This is easy to convert into a generic definition:

gfromRow :: (IsProductType a xs,All FromField xs) ⇒
RowParser a

https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/sqlite-simple

Staged Sums of Products Haskell ’20, August 27, 2020, Virtual Event, USA

gfromRow = productTypeTo
<$> sequenceNP (cpureNP (Proxy @FromField) field)

The difference to the other generic functions we have dis-
cussed is that we are operating in an applicative context.
The call to cpureNP constructs a product with field invoca-
tions at every position. The result type of cpureNP is of type
NP RowParser xs. Since RowParser is applicative, we can com-
bine the effects of the product components in sequence and
extract the context, by applying
sequenceNP :: Applicative f⇒ NP f xs→ f (NP I xs)

As a final step, we can then map the conversion function
productTypeTo over the resulting RowParser.
Unfortunately, the presence of the RowParser context af-

fects staging. We can still call cpureNP, and create code for
the invocations of field for the components:
cpureNP (Proxy @(Quoted FromField)) (Comp (C JfieldK))

:: NP (C :.: RowParser) xs

The expression JfieldK is of type
Quoted FromField x⇒ Code (RowParser x)

To make this fit the structure of NP, where a single type
constructor is applied to each x, we use functor composition:
newtype (f :.: g) x = Comp (f (g x))

The next step is a challenge. We cannot apply sequenceNP,
because Code and C are not applicative, and neither is C :.:
RowParser. Furthermore, we cannot expect to draw RowParser
out of the NP statically, because the wiring of the parser is
part of the generated code. Neither can we extract C out of
the NP, because then we would have Code producing an NP,
and we promised never to have NPs at run-time.
Therefore, instead of trying to stage sequenceNP, directly,

we will look at the common combination of sequenceNP fol-
lowed by a mapping of productTypeTo – which can be seen
as performing the transformation from the structural repre-
sentation to a user type in an applicative context – and try
to produce a staged version of that:
sproductTypeToA :: (IsProductType a xs,Quoted Applicative f) ⇒
NP (C :.: f) xs→ Code (f a)

Assuming this function is part of our staged generics library,
we can complete the staged version of gfromRow:
sgfromRow :: (IsProductType a xs,All (Quoted FromField) xs) ⇒

Code (RowParser a)
sgfromRow = sproductTypeToA

(cpureNP (Proxy @(Quoted FromField)) (Comp (C JfieldK)))

Now we can focus on defining sproductTypeToA. What kind
of code do we have to generate? We start from a product
Comp (C fx1) :∗ . . . :∗ Comp (C fx𝑛) :∗ Nil

where each fx𝑖 is code for an f-structure.We have to construct
Jpure Con <∗> $$(fx1) <∗> . . . <∗> $$(fx𝑛)K

where Con is the constructor function of our original Haskell
datatype. Let us try to obtain this constructor generically.
We have productTypeTo which applies the contructor, but it
expects its argument as a product. We have to curry that
function, turning the product into a chain of function ar-
guments. To this end, we define a type family Curry that
computes a curried function type from an NP:

type family Curry r xswhere
Curry r ‘[] = r
Curry r (x : xs) = x→ Curry r xs

Given Curry, we define a staged currying function that takes
a function expecting an NP C (just as productTypeTo does)
and produces code for the curried function:

scurryNP :: ∀ r xs . (All LiftT xs,AllTails (LiftTCurry r) xs) ⇒
(NP C xs→ Code r) → Code (Curry r xs)

scurryNP f =
case sList :: SList xs of
SNil → f Nil
SCons→ J𝜆x→ $$(scurryNP (𝜆xs→ f (C JxK :∗ xs)))K

The function sList from generics-sop gives us away to pattern-
match on the type-level list xs by means of a singleton type
SList. An unfortunate aspect of scurryNP are the constraints
we require. Not only do we need to know that all elements
of xs are in LiftT, we also have to know that for all suffixes
of xs, the constraint LiftT (Curry r xs) is satisfied. While in-
tuitively, it is clear this follows from All LiftT xs and LiftT r,
GHC cannot perform this reasoning. Therefore we encode
the constraint via additional type classes and families AllTails
and LiftTCurry. It is even more unfortunate that this AllTails
constraint now propagates to all functions using scurryNP
directly or indirectly. For the time being, we have decided to
hide it in the IsProductType constraint, but having to add a
constraint like this for a specific function is a flaw we would
like to improve on in the future.
We can now complete sproductTypeToA by performing a

foldl-like traversal over the NP, using the curried constructor
function as the initial value of the accumulator:

sproductTypeToA ::
∀ a f xs . (IsProductType a xs,CodeC (Applicative f)) ⇒
NP (C :.: f) xs→ Code (f a)

sproductTypeToA = go Jpure $$(scurryNP (productTypeTo @a))K
where

go :: ∀ ys . Code (f (Curry a ys)) →
NP (C :.: f) ys→ Code (f a)

go acc Nil = acc
go acc (Comp (C fx) :∗ fxs) = go J$$(acc) <∗> $$(fx)K fxs

The strategy that we just applied to obtain a staged conver-
sion function for product types that operates in an applicative
context can be generalised to general sum-of-product types,
to obtain a function

https://hackage.haskell.org/package/generics-sop

Haskell ’20, August 27, 2020, Virtual Event, USA Matthew Pickering, Andres Löh, and Nicolas Wu

app eq-t eq-p ser round
100

101

102

5.
95

46
.2
7

41
.8
5

21
.7
1

10
.2
6

1 1.
13

2.
71

4.
93

4.
62

1 1.
09 1.
13

1.
02

1Ti
m
e
(n
or
m
al
is
ed
,l
og

sc
al
e)

generics-sop GHC.Generics hand

Figure 1. Benchmarks, time relative to staged-sop.

stoA :: (Generic a,Quoted Applicative f) ⇒
SOP (C :.: f) (Description a) → Code (f a)

so that we can generally stage generic functions that require
an applicative context.

7 Evaluation
In Figure 1, we summarise the results of five benchmarks10
comparing our library staged-sop relative to generics-sop, an
implementation usingGHC.Generics and a hand-written ver-
sion of the function. The benchmarks implement the generic
append function (app), equality on trees (eq-t) and propo-
sitional formulae (eq-p), serialisation (ser) and serialisation
followed by deserialisation (round).

Benchmarking the library is in some ways a vacuous exer-
cise as with the use of inspection testing we are already con-
fident in the optimality of our definitions. However, it is still
interesting to see that for particular examples GHC.Generics
is comparable to hand-written code, but for other bigger
examples it reaches the limits of the optimiser. This confirms
our hypothesis that the optimiser is not to be trusted and
using a mechanism which guarantees the generic overhead
is removed has been worthwhile.
One reason the original generics-sop performs so un-

favourably is that most functions are written as compositions
of recursive functions, and are therefore less amenable to
inlining, whereas e.g. in GHC.Generics, generic functions
are typically implemented via a single type class.
A final note is that we did not go to any special effort to

write code generators which would produce optimal code.
The generators are of the high-level variety described in this
paper, without any further performance tweaks or modifica-
tions to standard GHC flags. The well-defined semantics of
staging is enough to produce a program in the correct form
which only requires the optimiser to do a small amount of
work to clean up beta-reductions or nested case expressions.

10Conducted using gauge, a fork of criterion with fewer dependencies.

8 Related Work
The problem of making generic programming libraries more
efficient is well known, and comparisons conducted between
them [Hinze et al. 2007; Rodriguez et al. 2008] showed that
performance degradation could be severe as implementations
moved away from compiler preprocessors to libraries.
Both the generic-deriving library [Magalhães 2013] and

generic-lens library [Kiss et al. 2018] are made more effi-
cient through inlining. Inlining [Peyton Jones and Marlow
2002] works by providing annotations that give hints to the
compiler about where it is desirable to inline code. While
the technique is able to remove most of the overhead most
of the time, it is unpredictable, because inlining rules are
sensitive to the particular optimisation strategies that GHC
is employing. It also requires significant annotations: inline
pragmas are required for to and from, as well as each of the
other generic functions, which is a tedious process.

In terms of overall strategy, the inlining method could not
be used on the Scrap Your Boilerplate (SYB) generics library
by Lämmel and Peyton Jones [2003], because SYB relies on
runtime casts [Lämmel and Peyton Jones 2004] (although
they are type safe). More recently, Yallop [2017] showed how
this could be avoided in a version of SYB in OCaml where
type equality tests are witnessed by GADTs. From there, the
features of MetaOCaml [Kiselyov 2014] are used for staging.

Adams et al. [2014] use the HERMIT plugin [Farmer 2015]
as a different approach to optimising SYB. This works by
interacting with GHC during the compilation process using a
combination of supercompilation [Turchin 1979] and partial
evaluation [Jones et al. 1993]. They too use type information
to determine whether an expression should be computed
statically at compile time or dynamically at runtime.
Untyped Template Haskell has been used in order to di-

rectly generate generic traversal functions in an ad-hoc man-
ner for both geniplate in the style of uniplate [Mitchell and
Runciman 2007] and Template Your Boilerplate [Adams and
DuBuisson 2012] in the style of SYB. These techniques are
not compositional, as you are restricted to only deriving tra-
versals for a specific type. We are the first to apply staging to
a sums-of-products based approach to generic programming,
and have demonstrated that using principled type-safe tech-
niques using reusable components that we can also generate
optimal code.
Aside from our current work, there are remarkably few

users of Typed Template Haskell [Pickering et al. 2020]. Re-
cently,Willis et al. [2020] have exploited it in order to remove
the overhead of using parser combinators. Looking further
afield there are many more examples of staged programming
in different domains which have used MetaOCaml [Kiselyov
2014] or LMS [Rompf and Odersky 2010] where the ideas
can be readily applied to Typed Template Haskell.

https://github.com/well-typed/generics-sop/tree/staged-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://hackage.haskell.org/package/gauge
https://hackage.haskell.org/package/criterion
https://hackage.haskell.org/package/generic-deriving
https://hackage.haskell.org/package/generic-lens
https://hackage.haskell.org/package/geniplate
https://hackage.haskell.org/package/uniplate

Staged Sums of Products Haskell ’20, August 27, 2020, Virtual Event, USA

9 Conclusions
This paper has demonstrated the use of staged-sop to write
high-level generic code generators for a selection of different
examples. Of course, we need not have stopped here, any
function which can be derived generically using generics-
sop could have been staged in a similar manner. What is
missing from the story is a seamless experience for users
in order to use our staged functions. At the moment they
must explicitly write the splice for each generic function they
use. In the future we wish to extend the instance derivation
mechanism in order to allow the derivation of type class
instances using generators defined using Typed Template
Haskell. That way the usage of Typed Template Haskell
can simply be a powerful tool for library authors and an
implementation detail for users.
In principle, the staging techniques in this paper could

also be applied to GHC.Generics as well as other generics
libraries, although the techniques we employ work partic-
ularly well with generics-sop and may be more invasive in
other libraries. In particular the functor-parameterised style
of generics-sop coordinates with the Code constructor in or-
der to provide a familiar interface which needed only a few
modifications in order to support the generation of a wide
variety of common generic functions without any overhead.

The raison d’être of datatype generic programming is to
use statically known information about a value in order to
generate families of functions which work for many different
datatypes. The folly has been that despite a clear separation
between the static and dynamic information, the distinction
has not been enforced in order to remove the generic over-
head from the generation functions. This paper shows that
staged programming provides the perfect tool for writing
generic functions, at a high-level, with reusable combinators
that guarantee that generic abstractions will be eliminated.
Finally, after all these years, we can use the full power of
generic programming without regret!

Acknowledgements
The authors would like to thank Ryan Scott and all the anony-
mous reviewers for their helpful and constructive comments
on draft versions of this paper. This work has been supported
by EPSRC grant number EP/S028129/1 on “SCOPE: Scoped
Contextual Operations and Effects”.

References
Michael D. Adams and Thomas M. DuBuisson. 2012. Template Your Boiler-

plate: Using Template Haskell for Efficient Generic Programming. In Pro-
ceedings of the 2012 Haskell Symposium (Copenhagen, Denmark) (Haskell
’12). Association for Computing Machinery, New York, NY, USA, 13–24.
https://doi.org/10.1145/2364506.2364509

Michael D. Adams, Andrew Farmer, and José Pedro Magalhães. 2014. Opti-
mizing SYB is Easy!. In Proceedings of the ACM SIGPLAN 2014 Workshop
on Partial Evaluation and Program Manipulation (San Diego, California,
USA) (PEPM ’14). Association for Computing Machinery, New York, NY,

USA, 71–82. https://doi.org/10.1145/2543728.2543730
Joachim Breitner. 2018. A Promise Checked is a Promise Kept: Inspec-

tion Testing. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell (St. Louis, MO, USA) (Haskell 2018). Associa-
tion for Computing Machinery, New York, NY, USA, 14–25. https:
//doi.org/10.1145/3242744.3242748

Edsko de Vries and Andres Löh. 2014. True sums of products. In Proceedings
of the 10th ACM SIGPLAN workshop on Generic programming, WGP 2014,
Gothenburg, Sweden, August 31, 2014, José Pedro Magalhães and Tiark
Rompf (Eds.). ACM, 83–94. https://doi.org/10.1145/2633628.2633634

Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016.
Visible Type Application. In Programming Languages and Systems, Peter
Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 229–254.

Andrew Farmer. 2015. HERMIT: mechanized reasoning during compilation in
the Glasgow Haskell Compiler. Ph.D. Dissertation. University of Kansas.

Ralf Hinze, Johan Jeuring, and Andres Löh. 2007. Comparing Approaches
to Generic Programming in Haskell. In Datatype-Generic Programming,
Roland Backhouse, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 72–149.

Jun Inoue and Walid Taha. 2016. Reasoning about multi-stage programs.
Journal of Functional Programming 26 (2016), e22. https://doi.org/10.
1017/S0956796816000253

Patricia Johann and Neil Ghani. 2007. Initial Algebra Semantics Is Enough!.
In Typed Lambda Calculi and Applications, Simona Ronchi Della Rocca
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 207–222.

Patricia Johann and Neil Ghani. 2009. A Principled Approach to Program-
ming with Nested Types in Haskell. Higher Order Symbol. Comput. 22, 2
(June 2009), 155–189. https://doi.org/10.1007/s10990-009-9047-7

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation
and Automatic Program Generation. Prentice-Hall, Inc., USA.

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml.
In Functional and Logic Programming, Michael Codish and Eijiro Sumii
(Eds.). Springer International Publishing, Cham, 86–102.

Csongor Kiss, Matthew Pickering, and Nicolas Wu. 2018. Generic Deriving
of Generic Traversals. Proc. ACM Program. Lang. 2, ICFP, Article 85 (July
2018), 30 pages. https://doi.org/10.1145/3236780

Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A
Practical Design Pattern for Generic Programming. In Proceedings of
the 2003 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation (New Orleans, Louisiana, USA) (TLDI ’03).
Association for ComputingMachinery, New York, NY, USA, 26–37. https:
//doi.org/10.1145/604174.604179

Ralf Lämmel and Simon Peyton Jones. 2004. Scrap More Boilerplate: Re-
flection, Zips, and Generalised Casts. In Proceedings of the Ninth ACM
SIGPLAN International Conference on Functional Programming (Snow
Bird, UT, USA) (ICFP ’04). Association for Computing Machinery, New
York, NY, USA, 244–255. https://doi.org/10.1145/1016850.1016883

José Pedro Magalhães. 2013. Optimisation of Generic Programs Through
Inlining. In Implementation and Application of Functional Languages, Ralf
Hinze (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 104–121.

José Pedro Magalhães and Andres Löh. 2014. Generic Generic Programming.
In Practical Aspects of Declarative Languages, Matthew Flatt and Hai-Feng
Guo (Eds.). Springer International Publishing, Cham, 216–231.

Neil Mitchell and Colin Runciman. 2007. Uniform Boilerplate and List
Processing. In Proceedings of the ACM SIGPLAN Workshop on Haskell
Workshop (Freiburg, Germany) (Haskell ’07). Association for Computing
Machinery, New York, NY, USA, 49–60. https://doi.org/10.1145/1291201.
1291208

Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow
Haskell Compiler Inliner. J. Funct. Program. 12, 5 (July 2002), 393–434.
https://doi.org/10.1017/S0956796802004331

Simon Peyton Jones, StephanieWeirich, Richard A. Eisenberg, and Dimitrios
Vytiniotis. 2016. A Reflection on Types. Springer International Publishing,
Cham, 292–317. https://doi.org/10.1007/978-3-319-30936-1_16

https://github.com/well-typed/generics-sop/tree/staged-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://doi.org/10.1145/2364506.2364509
https://doi.org/10.1145/2543728.2543730
https://doi.org/10.1145/3242744.3242748
https://doi.org/10.1145/3242744.3242748
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1017/S0956796816000253
https://doi.org/10.1017/S0956796816000253
https://doi.org/10.1007/s10990-009-9047-7
https://doi.org/10.1145/3236780
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/1016850.1016883
https://doi.org/10.1145/1291201.1291208
https://doi.org/10.1145/1291201.1291208
https://doi.org/10.1017/S0956796802004331
https://doi.org/10.1007/978-3-319-30936-1_16

Haskell ’20, August 27, 2020, Virtual Event, USA Matthew Pickering, Andres Löh, and Nicolas Wu

Matthew Pickering, Andres Löh, and Nicolas Wu. 2020. A Specification for
Typed Template Haskell. (2020). https://mpickering.github.io/papers/
specification-typed-th.pdf

Matthew Pickering, Nicolas Wu, and Csongor Kiss. 2019. Multi-Stage
Programs in Context. In Proceedings of the 12th ACM SIGPLAN In-
ternational Symposium on Haskell (Berlin, Germany) (Haskell 2019).
Association for Computing Machinery, New York, NY, USA, 71–84.
https://doi.org/10.1145/3331545.3342597

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kise-
lyov, and Bruno C. d. S. Oliveira. 2008. Comparing Libraries for Generic
Programming in Haskell. In Proceedings of the First ACM SIGPLAN
Symposium on Haskell (Victoria, BC, Canada) (Haskell ’08). Associa-
tion for Computing Machinery, New York, NY, USA, 111–122. https:
//doi.org/10.1145/1411286.1411301

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A
Pragmatic Approach to Runtime Code Generation and Compiled DSLs.
In Proceedings of the Ninth International Conference on Generative Pro-
gramming and Component Engineering (Eindhoven, The Netherlands)
(GPCE ’10). ACM, New York, NY, USA, 127–136. https://doi.org/10.1145/
1868294.1868314

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytin-
iotis. 2020. A Quick Look at Impredicativity. Proc. ACM Program. Lang.

4, ICFP, Article 89 (Aug. 2020), 29 pages. https://doi.org/10.1145/3408971
Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for

Haskell. In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell
(Pittsburgh, Pennsylvania) (Haskell ’02). Association for Computing Ma-
chinery, New York, NY, USA, 1–16. https://doi.org/10.1145/581690.
581691

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming
with explicit annotations. Theor. Comput. Sci. 248, 1-2 (2000), 211–242.
https://doi.org/10.1016/S0304-3975(00)00053-0

V. F. Turchin. 1979. A Supercompiler System Based on the Language REFAL.
SIGPLAN Not. 14, 2 (Feb. 1979), 46–54. https://doi.org/10.1145/954063.
954069

Jamie Willis, Nicolas Wu, and Matthew Pickering. 2020. Staged Selective
Parser Combinators. Proc. ACM Program. Lang. 4, ICFP, Article 120 (Aug.
2020), 30 pages. https://doi.org/10.1145/3409002

Jeremy Yallop. 2017. Staged Generic Programming. Proc. ACM Program.
Lang. 1, ICFP, Article 29 (Aug. 2017), 29 pages. https://doi.org/10.1145/
3110273

Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-Static
Data as Free Extension of Algebras. Proc. ACM Program. Lang. 2, ICFP,
Article 100 (July 2018), 30 pages. https://doi.org/10.1145/3236795

https://mpickering.github.io/papers/specification-typed-th.pdf
https://mpickering.github.io/papers/specification-typed-th.pdf
https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1145/1411286.1411301
https://doi.org/10.1145/1411286.1411301
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/3408971
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1145/954063.954069
https://doi.org/10.1145/954063.954069
https://doi.org/10.1145/3409002
https://doi.org/10.1145/3110273
https://doi.org/10.1145/3110273
https://doi.org/10.1145/3236795

	Abstract
	1 Introduction
	2 Programming with Sums of Products
	2.1 Structurally Representable Types
	2.2 Product Types
	2.3 Operations on Sums and Products

	3 Typed Template Haskell
	3.1 Quotations and Splices
	3.2 Top-Level Splices
	3.3 Stages
	3.4 Staging and Constraints

	4 Staging Generic Programs
	4.1 Unstaged Starting Point
	4.2 Conversion Functions

	5 Typed Template Haskell and Constraints
	5.1 Staging in GHC 8.10
	5.2 Quoting and Splicing Dictionaries
	5.3 Lifting Type Variables
	5.4 What If We Had Impredicativity?

	6 Examples of Staged Generic Functions
	6.1 Staged Semigroup Append
	6.2 Instantiating and Observing the Generated Code
	6.3 Equality
	6.4 Metadata and Customisation
	6.5 Parsing

	7 Evaluation
	8 Related Work
	9 Conclusions
	References

