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Abstract
We describe the design and motivation for Servant, an extensible,
type-level DSL for describing Web APIs. Servant APIs are Haskell
types. An API type can be interpreted in several different ways:
as a server that processes requests, interprets them and dispatches
them to appropriate handlers; as a client that can correctly query
the endpoints of the API; as systematic documentation for the API;
and more. Servant is fully extensible: the API language can be
augmented with new constructs, and new interpretations can be
defined. The key Haskell features making all this possible are data
kinds, (open) type families and (open) type classes. The techniques
we use are reminiscent of general-purpose generic programming.
However, where most generic programming libraries are interested
in automatically deriving programs for a large class of datatypes
from many different domains, we are only interested in a small
class of datatypes that is used in the DSL for describing APIs.

1. Introduction
The interface of a web application is described by its API. For
example, an HTTP API describes what kind of requests are accepted
by an application, what constraints are being imposed on the URLs,
the request headers, the body of input requests, and what kind of
responses can be expected.

In this paper, we introduce Servant, an extensible type-level DSL
for Haskell that aims at making web APIs first-class. A Servant web
API is just a Haskell type. It can be named, passed to or returned by
(type) functions, composed, exported by modules, and more.

There are already quite a number of other web DSLs that allow
the concise description of a web server: the program is structured
in such a way that the API can be easily read off the way in which
the handler functions are written and structured. Sometimes, this
approach is even taken further, and the server is augmented with
additional information such that API documentation can be gener-
ated automatically from the same code. However, there are limits
to this approach: the API here exists implicitly and is determined by
the server implementation; the documentation and the server imple-
mentation are mangled together and cannot easily be separated; it
is difficult to extend the language. For example, such an approach
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makes it difficult to say that two different servers implement the
same API, or make precise the differences in the API they imple-
ment. We also cannot easily implement a client for this API and
express in the type system that the API of the client matches that of
the server.

There are also other, more general-purpose, API description lan-
guages. However, they suffer from their own set of disadvantages.
They often lack the abstraction capabilities that a DSL embedded
into a language like Haskell can offer. Also, because such descrip-
tions are completely detached from an implementation, it can be a
lot of work to establish that an implemented server (or client) actu-
ally conforms to the described API.

With Servant, we make APIs first-class citizens that are indepen-
dent of, but can be checked against their implementation(s). This
allows us to compare different implementations of a single API, to
express that a client and a server are API-compatible, and to perform
many other interesting operations on APIs.

1.1 An introductory example
Here is the API of a minimalistic “echo” service in Servant:

type Echo = "echo"
:> ReqBody ’[PlainText] String
:> Get ’[PlainText] String

The Haskell type Echo1describes an API that accepts only GET
requests directed at the route /echo. It expects a request body of
content type text/plain, and produces a result of the same content
type. In the Haskell world, the content will be treated as a value of
type String.

The challenge we want to address in Servant is not just promot-
ing APIs to first-class entities, but to do so in a way that is both
type-safe and extensible.

By type safety, we mean that we want to be able to have the
compiler determine statically whether our code conforms to the
API. For example, a server implementing the Echo API really gets a
String as input, and has to return a String as output. Defining the
code and having it type-checked could not be any simpler:

handleEcho :: Server Echo
handleEcho txt = return txt

Here, the type Server Echo expands to (essentially) String ->
IO String.

By extensibility, we mean two different aspects: First, the API
description language itself is not closed. Servant defines operations
such as :>, ReqBody, Get and many more, but if that is not suffi-

1 In Servant, we make use of a number of Haskell extensions that
GHC implements. The string "echo" is a type-level string. The syntax
’[PlainText] denotes a one-element type-level list, not the type of lists.
Both are made available by the DataKinds GHC extension. And :> is an
infix operator on the type-level, requiring TypeOperators.
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cient, then it is easy to define new constructs without touching the
core library. Next to the obvious advantages in structuring the code
of Servant itself, this also lifts some pressure from the developers:
users of Servant who lack a feature can likely implement it on their
own, without having to change Servant itself.

Second, the number of interpretations associated with an API
is also open. Servant itself comes with quite a number of inter-
pretations already: we can supply suitable handlers to run a web
service conforming to the API; we can generate clients in two dif-
ferent ways, either as a number of Haskell functions that can be
used as part of a larger client application, or as JavaScript functions
that can be used for quickly testing the API interactively from the
browser; there is the option to generate Markdown documentation
of the API; we can generate type-safe hyperlinks for routes within
an API. But there are many other things we can imagine doing with
web APIs: generating automatic test suites, generating documenta-
tion in the format expected by general-purpose API specification
languages, generating servers for other low-level HTTP server im-
plementations and many more. With Servant, adding these is easily
possible.

The challenge of achieving extensiblity in these two ways is
commonly known as the expression problem (Wadler 1998), and
the implementation of Servant is a solution of one particular in-
stance of this problem.

1.2 Implementation techniques
The techniques we are using in order to implement Servant are rem-
iniscent of datatype-generic programming (Rodriguez et al. 2008).
We use our API types as codes in a universe, and have several inter-
pretations of such codes as various other types as well as associated
generic functions on them. However, where datatype-generic pro-
gramming usually aims at representing as many datatypes as possi-
ble via codes, Servant is deliberately domain-specific: we are only
interested in a very limited (yet extensible) set of codes.

Furthermore, we are using quite a number of advanced features
of the Haskell type system: type operators to provide a concise
look-and-feel to the API language; strings on the type level (in
other words, data kinds and kind polymorphism); most essentially,
we use (open) type families and (open) type classes to obtain the
exensibility we so desire.

We believe that Servant provides evidence that these techniques
are feasible for solving the expression problem and designing type-
safe extensible DSLs, for web APIs as well as in other domains.

1.3 Contributions and structure of the paper
In this paper, we make the following contributions:

• we introduce Servant itself, and describe the various benefits
one gets by using it (Section 2);

• we show how Haskell’s type system can be used to implement
Servant, by using a form of domain-specific generic program-
ming (we talk about the syntax of the DSL in Section 3 and about
the implementation of interpretations in Sections 4 and 5);

• we show that the implementation is fully extensible, thereby
providing a solution to the expression problem (Section 6).

In Section 7, we discuss related work, before we outline future
work and conclude in Section 8.

1.4 The status of the Servant implementation
Servant already exists for a while, and has evolved a bit. The orig-
inal motivation for developing Servant came from implementation
needs at Zalora. At the time of writing, Servant is available for use
on Github and Hackage as a collection of packages: servant for the
core API DSL, and dedicated packages for each of the interpreta-
tions. This paper describes version 0.4, and some aspects currently

in development. Servant is used in production right now at Zalora
and by several other users.

2. Using Servant
In the introduction, we’ve provided a very simple example of an
“echo” server API and its implementation. In this section, we are
going to look at a slightly more involved example, and explain in
a bit more detail how the existing features of Servant can be put to
use. We are not yet concerned with how everything works internally
– this will be covered in Sections 3 to 6.

2.1 Stepping a counter
For a start, consider the following informally specified API:

GET / obtain the current value of a counter
POST /step increment the current value of said counter

In Servant, one way to specify this API is as follows:

newtype CounterVal = CounterVal {getCounterVal :: Int}
deriving (Show, Num, FromJSON, ToJSON)

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

We introduce a newtype for counter values to provide some extra
type safety. (Such semantic typing is also useful for implementing
type class instances that should only apply to CounterVal, and
not to Int in general.) We derive several type classes that Int is
a member of for CounterVal.

The GetCounter type specifies the GET part of the API, as
indicated by the use of Get. It is accessible via route /. The result
is a Haskell CounterVal, which will be transformed to a JSON
number. The StepCounter type is for the POST part, as indicated by
the use of Post. This part is accessible under the route /step, and
it returns an empty response. In Counter, both routes are combined
into a single API by means of :<|> (which is provided by Servant).

2.2 Generating documentation
If you are implementing a web service, it is very convenient to have
up-to-date documentation of its API. With Servant, we can generate
documentation directly from an API, and augment it as needed with
additional information.

Here, we are only going to show how to obtain basic documen-
tation without any additional descriptions. For this purpose, Servant
provides the function

docs :: HasDocs api => Proxy api -> API

We have to tell docs what API we want to use. Because the result
of docs is always just API, an abstract structured description of the
API documentation, it provides no clue to the type checker what
instance of HasDocs to use. The common approach to solve this
problem is to pass in a proxy:

data Proxy a = Proxy

A proxy has a trivial run-time representation, but as a data-defined
type is injective by construction. It can thus be used by the type
checker to infer the desired value of api.

Servant also provides a function

markdown :: API -> String

that can render documentation as a String in Markdown format.
However, if we try to say

counterAPI :: Proxy Counter
counterAPI = Proxy

counterDocs :: String
counterDocs = markdown $ docs counterAPI
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## GET /

#### Response:

- Status code 200
- Headers: []

- Supported content types are:

- ‘application/json‘

- Response body as below.

‘‘‘javascript
42
‘‘‘

Figure 1. The GET part of counterDocs

we get a type error. In order to describe the format of input and
output parameters, Servant tries to generate examples based on
their types. For CounterVal, we have not yet specified how to do
so. We need to say something like

instance ToSample CounterVal CounterVal where
toSample _ = Just (CounterVal 42)

in order to make the definition of counterDocs type-check and
instruct Servant that 42 is a suitable example value for a counter.

We show the output fragment generated for the GET part of the
API in Figure 1.

2.3 Implementing a server
In implementing a server conforming to Counter, we follow its
structure. We can first define a handler for each of the components.
Let us first look at the GET part:

handleGetCounter :: TVar CounterVal -> Server GetCounter
handleGetCounter ctr = liftIO $ readTVarIO ctr

Obviously, we need to maintain the state of the counter. In this ex-
ample, we are ignoring any question of persistence – as it is orthog-
onal to how Servant works – and just use a transactional variable
(TVar) that we pass as an additional argument to the handler.

The Servant library defines a type family called Server that
computes the type of the required server code from any given API
specification. We have that

Server GetCounter ~ EitherT ServantErr IO CounterVal

(note that ~ is GHC’s way of denoting type equality). This type
indicates that we have two options: we can successfully process
the request, and produce a CounterVal; or we can fail and produce
a ServantErr, which among other things allows us to choose an
appropriate status code and message to indicate the kind of failure.
In making this decision, we are allowed to use IO.

For handleGetCounter, we are only interested in reading the
transactional variable, so we always succeed. By using

liftIO :: IO a -> EitherT e IO a

we can embed an IO action into the more complicated type.
The code for the POST part is very similar:

handleStepCounter :: TVar CounterVal -> Server StepCounter
handleStepCounter ctr =

liftIO $ atomically $ modifyTVar ctr (+ 1)

Finally, we can compose a server for the whole API:

handleCounter :: TVar CounterVal -> Server Counter
handleCounter ctr = handleGetCounter ctr

:<|> handleStepCounter ctr

The type Server Counter expands to a Server GetCounter
paired with a Server StepCounter, but for purely aesthetic rea-
sons, Servant uses a term-level :<|> instead of Haskell’s standard
pair constructor for joining the individual handlers.

2.4 Using the server
Once we have handleCounter, we would like to run our server. We
can do so by using the function serve that is provided by Servant:

serve :: HasServer api
=> Proxy api -> Server api -> Application

A proxy is needed again. While api is mentioned in the call
Server api, GHC cannot use it to infer api, as Server is a type
function and – unlike a data-defined type – not necessarily injec-
tive. The Application type is provided by the wai package, which
is independent from Servant. Several other Haskell packages can
deal with wai applications – in particular, the warp webserver.

Putting it all together, we need the following code to actually
start up a web server serving our API (on port 8000):

start :: IO ()
start = do

initCtr <- newTVarIO 0
run 8000 (serve counterAPI (handleCounter initCtr))

2.5 Querying the server
Once the server is running, we can use a generic web client such as
curl in order to observe that it seems to work as expected:

$ curl -X GET localhost:8000/ -w ’\n’
0
$ curl -X POST localhost:8000/step
$ curl -X GET localhost:8000/ -w ’\n’
1

We can also send requests that do not conform to the API:

$ curl -X POST localhost:8000/ -w ’\n’
method not allowed
$ curl -X GET localhost:8000/foo -w ’\n’
not found
$ curl -H "Accept: text/plain" -X GET localhost:8000/ -w ’\n’
unsupported media type

The last request fails because we explicitly state that we expect a
plain-text result, but our API specifies that the result can only be
returned as JSON (which corresponds to application/json).

Instead of using curl, we can also use Servant itself to give us
a client for the API. To do so, we simply say:

getCounter :<|> stepCounter =
client counterAPI (BaseUrl Http "localhost" 8000)

The function

client :: HasClient api
=> Proxy api -> BaseUrl -> Client api

computes client functions for a given API and base URL. The types
of the client functions obviously depend on the type of the API, and
are computed by the type function Client. In this case, we obtain

getCounter :: EitherT ServantError IO CounterVal
stepCounter :: EitherT ServantError IO ()

A ServantError occurs e.g. if we try to connect to a non-existing
server or there is any other kind of problem with processing the
request.

We can now also interact with our server from a Haskell pro-
gram or a GHCi session:

GHCi> runEitherT getCounter
Right (CounterVal {getCounterVal = 0})
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GHCi> runEitherT (stepCounter >> getCounter)
Right (CounterVal {getCounterVal = 1})

Keep in mind that while it is useful to handle both server and
client code for the same API via Servant (because we then get the
guarantee that they are really using the same API) it is by no means
required that we do so. We can also specify a web service API using
the Servant DSL, and use Servant to communicate with clients or
servers that are not implemented using Servant.

2.6 Modifying the API

Let us extend the current API with a new route:

type SetCounter = ReqBody ’[JSON] CounterVal :> Put ’[] ()

type Counter = GetCounter :<|> StepCounter :<|> SetCounter

While SetCounter is new, Counter is a modification of the original
definition. Once we do this, nearly everything we have done with
the old Counter API becomes type-incorrect – and this is a good
thing! Let us just look at the server: clearly, our old handleCounter
is no longer a faithful implementation of this new and modified API.

However, adapting the server is easy enough:

handleSetCounter :: TVar CounterVal -> Server SetCounter
handleSetCounter ctr newValue =

liftIO $ atomically $ writeTVar ctr newValue

Because SetCounter contains the ReqBody component, the handler
of type Server SetCounter can expect an additional CounterVal
argument that contains the decoded request body. It remains to
update the definition of handleCounter:

handleCounter :: TVar CounterVal -> Server Counter
handleCounter ctr = handleGetCounter ctr

:<|> handleStepCounter ctr
:<|> handleSetCounter ctr

If we use client on the new API, we now obtain three functions:

getCounter :<|> stepCounter :<|> setCounter =
client counterAPI (BaseUrl Http "localhost" 8000)

2.7 Type-safe links
Another possible extension of the API is to provide an HTML as well
as a JSON representation of counter values. The HTML representa-
tion should include a button that can be used to step the counter.

We can do this in principle by changing

type GetCounter = Get ’[JSON] CounterVal

to

type GetCounter = Get ’[JSON, HTML] CounterVal

However, making this change will result in another type error: GHC
will complain that it does not know how to convert a CounterVal
into HTML. For JSON, we did not have a problem because we
derived the ToJSON instance for CounterVal, which falls back on
the predefined ToJSON implementation for Int. For CounterVal,
we could in principle do a similar thing and fall back on a generic
HTML conversion function for integers – but that is not actually
what we want here! We want to produce a specific representation
for counters, and therefore define our own instance2:

instance ToHtml CounterVal where
toHtml (CounterVal val) =

p_ ( toHtml
$ "Current value: " ++ show val ++ "."
)

<> with form_ [action_ stepUrl, method_ "POST"]

2 Out of the box, Servant supports two popular Haskell HTML libraries:
blaze-html and lucid. We are using lucid here.

(input_ [type_ "submit", value_ "Step!"])
where

stepUrl = "step"

By saying stepUrl = "step", we are providing the URL of the
page that we wish to POST to. However, putting a String link
here is quite unsatisfactory, and we can do better than that. We can
simply say

stepUrl = pack . show $ safeLink counterAPI
(Proxy :: Proxy StepCounter)

instead to get the same effect in a safer way.
The Servant function

safeLink :: (Elem endp api ~ True, HasLink endp)
=> Proxy api -> Proxy endp -> MkLink endp

takes two proxies: one for the entire API we are operating on, and
one for an element of the API describing the path to a single end-
point. The constraints here ensure that a call to safeLink only type-
checks if the given API contains endp. The result is a MkLink endp,
where MkLink is yet another type function. Some links may require
additional parameters – e.g., to render query parameters into the
link – but in our particular case, MkLink StepCounter expands just
to an URI type, which we subsequently convert to Text for use in
the HTML library.

2.8 Summary
All of Servant is centered around its DSL for defining APIs. The
example API we have discussed is very simple. Nevertheless, it suf-
fices to demonstrate the benefits of Servant’s approach. By turning
the API into a Haskell type and thereby into a first-class citizen of
the language, we gain the ability to perform many operations on
the API, while statically checking that all our applications are in
fact conforming to the desired API and consistent with each other.
Applications we have seen so far are documentation generation,
implementation of servers, generation of client functions, and type-
safe links.

In each case, as much information as possible is encoded in and
automatically inferred from the provided API. But we also see that
additional information that is compatible with the API in question
can be supplied, such as the implementation of the handlers for the
server.

In addition, we benefit from the abstraction capabilities of the
underlying Haskell language in that we can abstract and reuse
APIs. If, for example, we suddenly decide that we would prefer to
integrate the counter API into a larger service, we can simply define

type Full = "counter" :> Counter
:<|> ...

and reuse handleCounter in defining handleFull. And if we then
decide that we would actually like to version our API, we can apply
the same approach again by saying

type FullVersioned = "v1" :> Full
:<|> "v2" :> FullV2
:<|> "v3" :> ...

once again reusing handlers (and other aspects like documentation
information) between versions where unchanged.

3. The DSL for APIs
After having seen several examples of how to use Servant, let
us now look more closely at how it works. We will start with
the API description language provided by Servant. In Section 3.1,
we summarize what a web API actually describes. In Section 3.2,
we provide a grammar for our language, and in Section 3.3, we
describe how we implement the grammar as a type-level DSL in
Haskell.
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3.1 Request, Response
A web API is an API that follows the pattern of request-response and
is made available via the network. Web APIs follow the HTTP pro-
tocol, which specifies that request messages should contain among
other things a method (GET, POST, DELETE, etc.), a path, zero or
more headers, a query string and a possibly empty body. HTTP re-
sponses must contain a status code (a three-digit number describing
the outcome of the request), zero or more headers, and a possi-
bly empty entity-body. Endpoints are specific combinations of con-
straints on HTTP requests (usually consisting at least of a constraint
on the path the request is made to, such as “equal to /users”). The
code that runs and produces a response from a request at a given
endpoint is usually called a request handler.

A request handler can be specified by listing exactly the con-
straints it places on the request (e.g., on the path, the method, the
parameters or the body) and the guarantees it makes about its re-
sponse (e.g., headers present or the shape of the body). Such a de-
scription provides enough information for external systems to reli-
ably interact with the web service, without having to know anything
about the code running inside its request handlers.

3.2 Syntax of APIs
To design a DSL that lets us describe APIs in a programming lan-
guage, we need various constructs: one for each HTTP method,
one for paths, one for request bodies and so on. Since a webservice
usually consists of more than one endpoint, our DSL should also
support a way to glue several endpoint descriptions together. The
(extensible) grammar of our DSL is shown in Figure 2 .

The two core combinators for building APIs are :<|>, which ex-
presses a choice between two endpoints, and :> which sequences
constraints on a request. The various forms of constraints on a re-
quest that can be specified are given by item. If a type-level string
(such as "step" in Section 2) is used, we specify one component
of the path of the URL of the request. We can use Header to re-
quire the presence of a particular request header. Similarly, with
ReqBody, we indicate that we expect the request body to be de-
codable to a specific Haskell type from a list of possible formats.
With Capture, we indicate that we expect a variable path compo-
nent at this position and that it must be decodable as a certain type.
By using QueryFlag, QueryParam or QueryParams, we check for
the presence of a particular query string parameter as part of the
request.

Every route in an api must end in a method. This category cor-
responds to the HTTP request methods, of which the most common
ones are directly supported. Each method is parameterized by a
list of content types and a Haskell type. The Haskell type speci-
fies the type of the result in the Haskell world; the list of content
types indicates the representations the Haskell type is available in.
The Headers construct can be used to attach some headers to a re-
sponse. Finally, there is a Raw construct used to integrate external
web applications of type Application under some path in an API –
it does not induce any constraint on the request.

3.3 Types are first-class citizens
Our DSL lives on the type level of Haskell, i.e., each expression built
according to the grammar in Figure 2 denotes a Haskell type. As we
have hinted at in Section 1, there are a number of reasons for mov-
ing to the type level: First, we want to separate the API from any in-
tepretation of the API (such as a web service implementing the API).
Second, we want to provide as much type safety as possible and as
much automation as possible when associating interpretations with
a given API. And third, we want the whole system to be extensible
in two dimensions (Wadler 1998): we support the addition of new
DSL constructs as well as the addition of new interpretations.

Since the grammar is used to structure Haskell types, it suggests
we should map each of the syntactic categories in the grammar
to a distinct Haskell kind. Unfortunately, while Haskell now sup-
ports the definition of new kinds via datatype promotion (Yorgey
et al. 2012), such kinds are closed, whereas we want all major
categories to be open, as indicated in the grammar. Haskell (or
rather GHC) supports just two open kinds: * and Constraint. As
Constraint is rather special-purpose, we have no other choice but
to use *.3 Nearly every construct shown in Figure 2 corresponds to
one Haskell datatype of kind *. 4 Our API types are merely codes or
descriptions. We will use type functions to interpret them in various
ways. We are losing some kind-safety in this way, which is unfortu-
nate. The safety of the overall program is not affected: if we make
mistakes, the program will still fail at compile time. But the error
messages may be worse than they would be otherwise, and we lack
the extra guidance that stronger kinds would provide.

As an example, we show the type declarations for some repre-
sentative DSL constructs:

data api1 :<|> api2
infixr 8 :<|>

data (item :: k) :> api
infixr 9 :>

data ReqBody (ctypes :: [*]) (t :: *)
data Capture (symbol :: Symbol) (t :: *)

data Get (ctypes :: [*]) (t :: *)
data Post (ctypes :: [*]) (t :: *)

data JSON

As an exception to the general rule, we keep the first argument
of :> kind-polymorphic. This allows us to directly use type-level
strings (which have kind Symbol in Haskell) as well as the other
item constructs (which we define to be of kind *) in this position.

The DSL is reminiscent of a universe or view used in general-
purpose datatype-generic programming (cf. Section 7.1). There, the
codes typically describe arbitrary (Haskell) datatypes. An operator
similar to :<|> is used to denote choice between constructors, and
an operator similar to :> is used to group multiple arguments of a
single constructor. Such general-purpose codes are then interpreted
as datatypes, and generic functions are defined over the structure of
the codes in order to work for all datatypes covered by the universe.

The Servant situation can thus be seen as domain-specific
generic programming: Our codes do not aim to describe a large
class of datatypes. They describe APIs. Nevertheless, we interpret
them as other types, as we shall see in Sections 4 and 5. And we
define “generic” functions over them that automatically work for
all valid APIs.

Every construct we have now defined is just an individual
datatype, and completely independent of the others. In fact, they

3 As described by Eisenberg and Weirich (2012), there actually is a trick
to create more closely matching kinds that are still open. For e.g. content
types, we cannot promote

data ContentType = JSON | HTML | PlainText

because that would be closed. But we can define

data ContentType

data JSON (c :: ContentType)

...

Now all content types are of kind ContentType -> *, distinct from *.
However, this encoding introduces extra type arguments in many places,
reducing readability for relatively little extra safety, so we do not use it. It
would be nice if Haskell had direct support for user-defined open kinds.
4 These types can be uninhabited as far as the description language is
concerned. Some of them (such as :<|>) actually have constructors, but
only in order to reuse the type in some of the interpretations.
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api ::= api :<|> api
| item :> api
| method

item ::= symbol
| header
| ReqBody ctypes type
| Capture symbol type
| QueryFlag symbol
| QueryParam symbol type
| QueryParams symbol type
| ...

method ::= Get ctypes rtype
| Put ctypes rtype
| Post ctypes rtype
| Delete ctypes rtype
| Patch ctypes rtype
| Raw

| ...

rtype ::= Headers headers type
| type

headers ::= ’[header, ...]

ctypes ::= ’[ctype, ...]

header ::= Header symbol type

symbol ::= a type-level string

type ::= a Haskell type

ctype ::= PlainText

| JSON

| HTML

| ...

Figure 2. Grammar of the Servant type-level DSL for APIs

are defined in separate modules in the Servant library, and they
could very well be defined in separate packages. This is essential
for extensibility. If we want to extend the API language, we can
do so by defining a new datatype elsewhere, without changing the
existing Servant library. No combinator is special and user-written
ones can freely be mixed with the ones above.

4. Interpreting an API as a server interface
The DSL described in the previous section lets us write down de-
scriptions of web APIs as types. However, the types alone are not
yet very useful. So far, they are merely abstract descriptors.

In this and the following section, we are going to explore how
we can interpret APIs in several different ways. We will start by
looking at what is probably the most prominent interpretation: that
as a web service.

In Section 2.4, we have already seen that Servant provides a
function

serve :: HasServer api
=> Proxy api -> Server api -> Application

that takes a proxy for an API type as well as suitable handler
functions to a target type that is called Application. It is the goal
of this section to explain how to implement this function.

The rest of this section is structured as follows: we start by
briefly introducing the wai library that we target and that provides
the Application type (Section 4.1). We then look at the general
approach of how to use both type classes and type families in order
to provide semantics to an open type-level language such as our DSL
(Section 4.2). And finally (Sections 4.3 to 4.9), we explain how this
technique can be applied in the implementation of Servant.

4.1 The wai view on web applications
Because we do not want to implement a web server from scratch,
we choose a suitable low-level target library called wai (the “Web
Application Interface”, short wai). Using wai is not essential for us-
ing Servant though – we could target other similar libraries instead.

At the core of wai is the Application type that we have already
seen. It is a type synonym that is defined as follows:

type Application = Request
-> (Response -> IO ResponseReceived)
-> IO ResponseReceived

This is very nearly

type Application = Request -> IO Response

only that instead of producing the Response directly, we are
provided with a continuation that we can call once we have a
Response. The types Request and Response are Haskell record
types describing an HTTP request and a response, respectively.

Once we have defined a value of type Application, we can use
a Haskell web server such as warp to run it. Our aim is thus to in-
terpret our API language as an Application, as performed by the
serve function. But we also want the interpretation to be compo-
sitional: it should follow the structure of the API language, i.e., the
grammar given in Figure 2, and the semantics of complex API types
should be defined in terms of the semantics of its components.

However, for the components, we need slightly more infor-
mation than Application itself is able to provide: the idea of
the choice combinator :<|> is that we can combine several API
parts, and if the first part does not match a given request, we will
try the second. But how do we express “does not match” using
the Application type? With Application, we have to produce a
Response, but while a Response can of course represent an HTTP
error, we need a way to distinguish a hard failure (i.e., a request
that was matched and resulted in a true error) from a soft failure
indicating that the request has not been matched yet.

In Servant, we extend Application to RoutingApplication
for this reason:

type RoutingApplication =
Request

-> (RouteResult Response -> IO ResponseReceived)
-> IO ResponseReceived

The only difference is in the continuation, which now takes a
RouteResult Response rather than a plain Response, where

data RouteResult a = NotMatched | Matched a

allows us to use NotMatched in a component if we want to indicate
a soft failure.5

It is easy enough to go back to an Application in the end
– all we have to do is to decide how to interpret an unhandled
NotMatched, which we do by sending a generic empty 404 re-
sponse:

toApplication :: RoutingApplication -> Application
toApplication app request respond =

app request $ \routeResult -> case routeResult of
Matched result -> respond result
NotMatched -> respond

(responseLBS notFound404 [] "")

4.2 Interpreting open type-level DSLs
Before we put RoutingApplication to good use by interpreting
the rather large Servant DSL, let us first take a step back and look at

5 We have simplified RouteResult to keep the presentation concise. In the
actual Servant implementation, RouteResult contains additional informa-
tion that tracks the exact reason for the failure. This information is then used
to send appropriate HTTP status codes in the responses.
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a much simpler type-level DSL, using it as an example to describe
the general technique. Consider the following grammar:

expr ::= One | expr :+ expr | Hole | ...
This is an open expression language that allows us to denote the
constant number “one” as well as addition of two expressions. We
also allow holes in our expressions. As described in Section 3, we
are mapping this grammar to the Haskell type level by introducing
a new uninhabited datatype for each construct:

data One
data e1 :+ e2
data Hole

As with Servant itself, we can use type synonyms to define terms
in this language:

type Two = One :+ One
type Holes = Hole :+ One :+ Hole

A simple interpretation of such expressions would be as a string,
printing holes using a special character, e.g., ’_’. A more inter-
esting situation arises if we want to interpret expressions as their
integer values, and take additional arguments for each Hole. To
implement this, we define a type class HasValue that contains an
associated type – an open type function defined within the class:

class HasValue a where
type Value a r :: *
valOf :: Proxy a -> (Int -> r) -> Value a r

The function valOf gets a continuation to feed the resulting integer
to. By setting Value, each construct can decide whether it wants
to return the final result r immediately, or demand additional argu-
ments.

We now give the interpretation simply by defining instances for
each construct, following the structure of the grammar. The case
for One does not demand any additional arguments:

instance HasValue One where
type Value One r = r
valOf _ ret = ret 1

The case for :+ calls the components in continuation passing style:

instance (HasValue e1, HasValue e2) =>
HasValue (e1 :+ e2) where

type Value (e1 :+ e2) r = Value e1 (Value e2 r)
valOf _ ret = valOf (Proxy :: Proxy e1) (\v1 ->

valOf (Proxy :: Proxy e2) (\v2 ->
ret (v1 + v2)))

For holes, we do expect an additional integer argument:

instance HasValue Hole where
type Value Hole r = Int -> r
valOf _ ret n = ret n

Because of Value being set to Int -> r, we can expect the inte-
ger n in valOf and then use it.

It remains to define a wrapper initializing the continuation to id
to just produce the final result:

valueOf :: HasValue a => Proxy a -> Value a Int
valueOf p = valOf p id

This works as expected:

GHCi> let t1 = valueOf (Proxy :: Proxy Two)
GHCi> let t2 = valueOf (Proxy :: Proxy Holes)
GHCi> :t (t1, t2)
(t1, t2) :: (Int, Int -> Int -> Int)
GHCi> (t1, t2 3 4)
(2, 8)

Type families thus allow us to compute new types from the type
descriptors that make up our DSL. The DSL is fully extensible: We

can define new interpretations simply by adding another class. We
can also add a new construct to our DSL by adding a new datatype
definition and adding a new instance for each of the classes.

We are now going to use the same technique to provide an
interpretation for the Servant DSL.

4.3 The HasServer class
The interpretation of an API as a web server is given by the
HasServer class:6

class HasServer api where
type Server api :: *
route :: Proxy api -> Server api -> RoutingApplication

The API alone is not enough to describe a server. A server consists
in essence of a collection of suitable handlers that can deal with
the incoming requests. The type of this collection is computed by
the associated type Server. Once the server is running, we have to
route requests to the appropriate handler. This is the task of route.

As in Section 4.2, we proceed by giving instances for all the
constructs of our DSL, following the grammar of the DSL as given in
Figure 2. But there are some concerns: in our simple example, we
had just one syntactic category expr; now we have several. When
we want to interpret a term-level DSL given by several (mutually
recursive) datatypes, we provide a different interpretation function
for each datatype. In the type-level scenario, this would mean a
different type class for each syntactic category, such as

class HasServerAPI api
class HasServerItem item
class HasServerMethod method
...

However, applying this strategy will in some places lead to over-
lapping instances that are difficult to resolve for GHC. Instead, we
inline the item, header, method and rtype categories shown in Fig-
ure 2 into the api category, so that the transformed equivalent gram-
mar looks as follows:

api ::= api :<|> api
| symbol :> api
| Header symbol type :> api
| ReqBody ctypes type :> api
| ...
| Get ctypes (Headers headers type)
| Get ctypes type
| ...

From here, we go directly to instance declarations:

instance ... => HasServer (api1 :<|> api2)
instance ... => HasServer ((sym :: Symbol) :> api)
instance ... => HasServer (Header sym t :> api)
instance ... => HasServer (ReqBody ctype t)
...
instance ... => HasServer (Get ctypes (Headers hs t))
instance ... => HasServer (Get ctypes t)

Note that the instance (sym :: Symbol) :> api does not overlap
with the other :>-instances: We made :> kind-polymorphic in its
first argument, and the kind here is Symbol, whereas all other
instances have an argument of kind * in this position – and GHC
uses kind information during instance resolution.

We will look at a few of these instances more closely and dis-
cuss the main ideas that are being used throughout the implemen-
tation.

6 The actual implementation defines a ServerT monad transformer rather
than a Server monad, thereby giving extra flexibility to users in that they
can use (parts of) their own monad transformer stack when implementing
servers.
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4.4 The case of Get
Let us look at the instance for Get first. Recall that

data Get (ctypes :: [*]) (t :: *)

is parameterized by a list of content types and the Haskell return
type of the handler. Let us at first consider a simplified version of
Get that instead of the general content-type handling always returns
a textual result:

data GetText (t :: *)

If the API is a plain GetText node, then we expect t to be convert-
ible into a String (i.e., to be in the Show class), and the handler
corresponding to such a node is a monadic action that takes no ar-
guments and produces a value of type t if successful. The monad
we use here is IO with the additional option to produce error re-
sponses of type ServantErr:

instance Show t => HasServer (GetText t) where
type Server (GetText t) = EitherT ServantErr IO t

route :: Proxy (GetText t) -> Server (GetText t)
-> RoutingApplication

route _ handler request respond
| pathIsEmpty request
&& requestMethod request == methodGet = accept
| otherwise = respond NotMatched

The function route takes four arguments: it ignores the proxy
(which we need only for guiding the type checker), takes the server,
which is a single handler. It furthermore gets the request and the
continuation for responding from the RoutingApplication. We
expect the path of the incoming request to be empty, and the request
method to be GET. We either accept or reject the request. We still
have to implement accept:

where
accept = do

e <- runEitherT handler
respond $ case e of

Right t -> Matched $ responseLBS ok200
[("Content-Type", "text/plain")]
(fromString (show t))

Left err -> Matched $ responseServantErr err

Accepting the request means that we call the handler and process its
result. Since the Server (GetText t) type expands to an EitherT,
the handler can itself succeed (Right) or fail (Left). On success, we
create a successful (status 200) response and convert the result of
the handler into the response body. If the handler fails, we pass on
the error using responseServantErr, which will result in an error
response being sent to clients.

4.5 Content types
If we want to move from the simplified GetText to the full Get
combinator, we have to understand how Servant treats content
types: An API specification such as

Get ’[JSON, HTML, PlainText] MyType

means that Servant can use three different methods to encode a
value of MyType as the body of the response. Each content-type
descriptor (such as JSON, HTML, PlainText) determines not only
the Content-Type header of the response, but also the conversion
method that is being used. By default, Servant will use the first type
mentioned in the list. However, clients are allowed to use Accept
headers in the requests they send to indicate what content types
they expect to see.

Every content-type descriptor in Servant must be a member of
the Accept class, which specifies the media type to use (Freed and
Borenstein 1996):

class Accept ctype where
contentType :: Proxy ctype -> MediaType

The next step is to define how Haskell types can be rendered (e.g. in
responses) or unrendered (e.g. in request bodies) according to this
content-type method. For rendering, there is

class Accept ctype => MimeRender ctype t where
mimeRender :: Proxy ctype -> t -> ByteString

For unrendering, there is a similar class MimeUnrender. For most
content-type descriptors, there is a rather generic MimeRender in-
stance that delegates the actual translation work to some other li-
brary.

Next, there is a class called AllMimeRender (and similarly
AllMimeUnrender) that lifts the MimeRender functionality to type-
level lists containing content type descriptors:

class AllMimeRender (ctypes :: [*]) t where
allMimeRender :: Proxy ctypes -> t

-> [(MediaType, ByteString)]

Using allMimeRender, we can compute a lookup table of different
ByteString encodings, indexed by content type. The instances
follow the inductive structure of (type-level) lists:

instance AllMimeRender ’[] t where ...
instance (MimeRender ctype t, AllMimeRender ctypes t) =>

AllMimeRender (ctype ’: ctypes) t where ...

Note that these instances are defined once and forall – they do not
depend on the individual content types.

Finally, there is a function

handleAcceptH :: AllMimeRender ctypes t
=> Proxy ctypes -> AcceptHeader -> t
-> Maybe (ByteString, ByteString)

that takes an Accept header from a request and a value of type t.
It uses allMimeRender to compute the lookup table of available
encodings and picks a suitable one allowed by the Accept header.
Both the selected content type and the encoding are returned as
ByteStrings.

This function is then put to use in the interpretation of Get:

instance AllMimeRender ctypes t =>
HasServer (Get ctypes t) where ...

We omit the instance body, as there are not many differences com-
pared to GetText. The definition of Server is identical, and the
definition of route is the same except that it additionally runs the
result of the handler through handleAcceptH.

The cases for the other HTTP methods (Post, Put, Delete, etc.)
are all very similar to the case for Get. In particular, they all reuse
exactly the same machinery for content types that we have just
discussed.

4.6 The case of symbols
Let us now look at one of the many instances that deal with :>, de-
pending on its first argument. If we encounter an API specification
of the form

"foo" :> rest

then the presence of the "foo" :> prefix plays no role whatsoever
for the handler, so we can reuse the type of the handler for rest:

instance (KnownSymbol sym, HasServer api) =>
HasServer (sym :> api) where

type Server (sym :> api) = Server api

For routing, we expect the incoming request to be for a URL path
that has foo as its first component. If this is the case, we just
forward the request to rest, with the first path component stripped.
Otherwise, we can immediately reject the request:
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route _ handler request respond =
case processedPathInfo request of

p : ps | p == symval -> forward ps
_ -> respond NotMatched

where
symval = pack (symbolVal (Proxy :: Proxy sym))
forward ps = route (Proxy :: Proxy api) handler

(request {pathInfo = ps}) respond

We use

symbolVal :: KnownSymbol sym => Proxy sym -> String

from the GHC base libraries in order to obtain the term-level String
corresponding to a type-level symbol.

4.7 The case of Capture
Interesting are the cases that add additional arguments to the type
of the handler. Examples are all items that extract dynamic infor-
mation from the request that is then made accessible to the handler
– such as Capture. For example, a route

Capture "arg" Int :> rest

means that the first path component of the request has to be decod-
able as an Int. The rest of the request is then forwarded to rest.
The decoded Int is passed to the handler, which therefore has to
be a function expecting an Int. The label "arg" is not actually be-
ing used by the server interpretation – it is primarily being used for
generating documentation.

The implementation of the general case looks as follows:

instance (KnownSymbol sym, FromText t, HasServer api)
=> HasServer (Capture sym t :> api) where

type Server (Capture sym t :> api) = t -> Server api

The definition of Server specifies that the handler in this case is a
function taking an argument of type t.

route _ handler request respond =
case processedPathInfo request of

p : ps | Just v <- (fromText p :: Maybe t)
-> forward ps v

_ -> respond NotMatched
where
forward ps v = route (Proxy :: Proxy api) (handler v)

(request {pathInfo = ps}) respond

The Servant library provides

fromText :: (FromText t) => Text -> Maybe t

which is used to attempt a conversion of the first path component of
the request into the desired type. If successful, we obtain a decoded
value v which is then passed to the handler in forward.

Other DSL constructs such as e.g. ReqBody, Header or QueryParam
use a similar approach, only they try to decode the value being ex-
posed to the handler from a different part of the request.

4.8 The case of :<|>
As a final example case, let us look at the choice operator :<|>.
The handler associated with a choice is a choice between handlers
– in other words, a pair of handlers. Because there are often chains
of choices occurring in APIs, and nested pairs look syntactically
awkward in Haskell, and moving to larger tuples is tricky to do
generically, Servant introduces an isomorphic copy of the pair type
for this purpose, and reuses the :<|> descriptor type for this:7

data a :<|> b = a :<|> b
infixr 8 :<|>

7 This is one of the cases we mentioned in Section 3 where the API descrip-
tor type is not actually uninhabited for aesthetic reasons.

instance (HasServer api1, HasServer api2) =>
HasServer (api1 :<|> api2) where

type Server (api1 :<|> api2) =
Server api1 :<|> Server api2

route _ (handler1 :<|> handler2) request respond =
route (Proxy :: Proxy api1) handler1 request $ \r ->

case r of
Matched result -> respond (Matched result)
NotMatched -> route (Proxy :: Proxy api2)

handler2 request respond

For routing, the strategy is as follows: We obtain a pair of handlers.
We try to feed the request to the first handler. In its continuation, we
look at the response r of that handler. If the handler accepted the
request (Matched), we respond with its result. But if the handler
rejected the request (NotMatched), we try the same request with
handler2 instead.

4.9 Summary
This concludes our discussion of the server interpretation of the
API DSL. Note that this is by no means the only way in which we
can interpret the Servant DSL as a server. Instead of targetting the
wai Application type, we could have targetted any other low-level
(or even high-level) Haskell web server framework.

It is also possible to be more clever about routing. The actual
implementation already does a bit more work because it has a more
informative RouteResult type and makes use of the information
contained therein to send better responses in case of failure. But
much like general-purpose parsers can benefit from a left-factoring
of the underlying grammar and committing quickly to choices
based on limited look-ahead, we can in principle apply similar
techniques in Servant: the API is specified statically – we can detect
if multiple paths joined by :<|> have common prefixes and factor
them out; we can also look ahead into the “first sets” allowed for
the paths in each of the options, and dispatch more quickly to the
right choice rather than trying each branch one by one.

The main purpose of explaining the server interpretation was,
however, to give a non-trivial example of how to structure an in-
terpretation in general. Other interpretations follow the same struc-
ture (and indeed, the variants of the server interpretation mentioned
above could just be implemented as additional interpretations). In
Section 5, we will look more briefly at some of the other interpre-
tations that come predefined with Servant.

5. Other interpretations
Servant provides more than just one interpretation of the API DSL.
Fortunately – while each interpretation adds useful functionality to
the Servant landscape – they hardly pose any new difficulties on the
implementation side.

Nearly all interpretations follow the scheme that we have out-
lined in Section 4: there is one type class, and the structure of the
instances follows the structure of the inlined grammar as shown
in Section 4.3. In this section, we will therefore mainly focus on
the generation of type-safe links (Section 5.2), because it intro-
duces a few new implementation ideas, and only very briefly look at
the generation of client functions (Section 5.1) and documentation
(Section 5.3).

5.1 Generating client functions
Servant provides two ways of generating clients: by directly in-
terpreting the API as a collection of Haskell client functions, and
a more classic code-generation approach that produces JavaScript
code based on JQuery which can then be used to interact with the
server from a web page or a JavaScript program.
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The native Haskell approach is particularly appealing because it
does not involve any additional generation step, and any change to
the API is immediately reflected in the types of the client functions.
The structure of this interpretation is exactly the same as that of
the server implementation. The class here is called HasClient and
again comprises an associated type and a function:

class HasClient api where
type Client api :: *
clientWithRoute :: Proxy api

-> Req -> BaseUrl -> Client api

The function clientWithRoute takes the proxy for the API, an
accumulated request of type Req, the base URL for the server,
and produces client functions that match the API with the help
of Client. Users will not invoke clientWithRoute directly, but
rather client, which does nothing else but to initialize Req with
the representation of an empty request.

The type function Client is very similar to the type func-
tion Server – it computes the types of the client functions from
the API type. The main difference is that Server api is an in-
put to the route function, whereas Client api is an output of
clientWithRoute.

5.2 Type-safe links
As briefly discussed in Section 2.7, Servant also provides the pos-
sibility to compute type-safe links to individual endpoints within a
given API. The core of this interpretation is formed by another type
class:

class HasLink endp where
type MkLink endp
toLink :: Proxy endp -> Link -> MkLink endp

Much like Req for HasClient, Link is an accumulated abstract
description of the path to the link up to the current point. The
MkLink type family computes a function type resulting in an URI,
but depending on the endp, we might need additional parameters.

One aspect of HasLink is significantly different from the server
and client interpretations that we have seen before: The HasLink
class does not range over essentially all API types, but only over a
subset of the API DSL, namely the subset without choice (:<|>).

The idea is that endp is instantiated with an individual endpoint
that is contained within a given API. The toLink function can be
used in order to compute the proper URL path to this point. In order
to actually make it safe, we have to separately check whether the
endp we are interested in is actually contained in the full API we are
working with. For this purpose, there is

safeLink :: (Elem endp api ~ True, HasLink endp)
=> Proxy api -> Proxy endp -> MkLink endp

safeLink _ endp = toLink endp emptyLink

that additionally performs a suitable check via Elem, a type family
that is another essential part of the Servant machinery for safe links.

Let us look at Elem more closely, 8 because it is a nice demon-
stration of the power resulting from making APIs first class – we
can easily define arbitrary computations on or transformations of
APIs, as type-level functions.

The general recursive structure of Elem is the same as that of the
type classes (cf. Section 4.3), the only difference being that Elem is
an open type family:

type family Elem (e :: *) (a :: *) :: Bool
type instance Elem e (a1 :<|> a2) = ElChoice e a1 a2
type instance Elem e ((s :: Symbol) :> a) = ElSymbol e s a
...

8 The current implementation of the element check deviates quite a bit from
what is presented here – although the ideas are the same. We expect a future
release of Servant to adapt the approach described here.

Each case dispatches to another type synonym or type family. These
individual type families may be closed (closed type families allow
overlapping cases, open type families do not). It is important that
Elem itself is extensible with new cases when new DSL constructs
are added.

As an example of an individual case, let us look at ElChoice:
type ElChoice e a1 a2 = Or (Elem e a1) (Elem e a2)

type family Or (b1 :: Bool) (b2 :: Bool) :: Bool where
Or True b2 = True
Or False b2 = b2

An endpoint is contained in a choice of two APIs if it is contained
in the one or in the other.

For a symbol to match, the same symbol must be present in both
the endpoint and the API at this point:

type family ElSymbol e (s :: Symbol) a :: Bool where
ElSymbol (s :> e) s a = Elem e a
ElSymbol e s a = False

Note that type families in GHC – unlike normal function definitions
– allow non-linear patterns, and the double occurrence of s on the
left hand side of the first case implies that both symbols must be
equal.

Some other items are considered optional: e.g. a ReqBody can be
included in the endpoint specification at the correct point, but it can
also be omitted, and the element check will still succeed. For the
list of content types that appear in the HTTP method combinators,
we do not expect exact equality, but merely a sublist relationship.

5.3 Documentation generation
The Elem type function discussed above is remarkable because it
provides us with a way of identifying parts of an API by name rather
than by position.

Recall for example HasClient from Section 5.1: a call to
client produces a collection of Haskell client functions. To get
at the individual client functions, we have to pattern match on the
resulting structure, using :<|> to extract the components (cf. 2.5).
But by using a function similar to Elem, we could also provide a
version of client that can generate a specific client function on
request, by providing a proxy for the path to its endpoint.

A similar technique is being used in the documentation genera-
tor provided by Servant. As shown in Section 2.2, the default format
just lists the paths to the endpoints, the methods, and the types of
inputs and outputs (possibly by providing examples).

Good documentation, however, contains much more informa-
tion than that. We might want to flexibly add additional information
to various places of the API. But at the same time, we do not nec-
essarily need to attach information everywhere. By using a name-
based rather a position-based scheme, we can achieve this goal:
the default documentation being generated is free of additional in-
formation, but can subsequently augmented with extra material in
specific places based on providing paths into the API.

6. Extending the API language
The goal of this section is to demonstrate what a user has to do in
order to extend the Servant library in various ways, and that this
is indeed feasible without touching existing code. We discuss two
examples below: the addition of a CSV content type in Section 6.1,
and the addition of a new combinator that allow handlers to access
the IP address of clients in Section 6.2.

We have already seen in Section 5 that adding completely new
interpretations is easily possible, as the ones shipping with Servant
are in no way privileged. We have furthermore seen that sometimes,
interesting applications may become possible by the use of addi-
tional type functions that operate on the API DSL, such as Elem in
Section 5.2.
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6.1 Adding a new content type
In the course of writing a web application, content types not yet
provided by Servant may be needed. Creating a new one is straight-
forward. We choose as an example the CSV format, and assume
that we have an independent library that provides us with a general
conversion interface such as the following:

class ToCSV a where encodeCSV :: a -> ByteString
class FromCSV a where decodeCSV :: ByteString -> Maybe a

We can then define a new content type descriptor CSV, which ac-
cording to the outline given in Section 4.5, must be made an in-
stance of the Accept, MimeRender and MimeUnrender classes:

data CSV

instance Accept CSV where
contentType _ = "text" // "csv"

instance ToCSV a => MimeRender CSV a where
mimeRender _ = encodeCSV

instance FromCSV a => MimeUnrender CSV a where
mimeUnrender _ = decodeCSV

The Accept instance associates our type with the appropriate media
type. The other two instances delegate encoding and decoding
to the conversion functions supplied by the assumed CSV library.
Taken together, these three instances make CSV a fully supported
content type one can use in API types.

If defined like above, the MimeRender and MimeUnrender
classes cannot be extended with other instances easily (that would
lead to overlapping instances). If we for example wanted to sup-
port two different CSV libraries, the correct approach would be to
define two different Servant content types that would both map to
the text/csv media type.

6.2 Adding a Host combinator
As a second example, let us extend the API description language
with a new construct that belongs into the item category of the
grammar: a Host combinator that indicates that an endpoint needs
access to the IP addresses or hosts that the request originates from.

Haskell’s main networking library provides a SockAddr type
whose very purpose is to represent hosts and IP addresses, which
makes it a great fit for the interpretation of the host combinator as
an argument of that type to request handlers. As with every other
combinator, we start by declaring an unhabited type.

data Host

We now simply have to extend all the interpretations that we are
interested in by providing additional instances dealing with Host
for the appropriate classes.

The HasServer instance is quite straight-forward. It states that
any handler using Host must take an argument of type SockAddr
and tells Servant that it can find this information in the remoteHost
field of wai’s Request type.

instance HasServer api => HasServer (Host :> api) where
type Server (Host :> api) = SockAddr -> Server api

route _ handler request respond =
route (Proxy :: Proxy api) (handler h) request respond
where h = remoteHost request

For other interpretations, instances can be added similarly. Most are
of similar complexity or even simpler. For example, for HasClient,
the Host item can be just ignored. Any HTTP client automatically
inserts the IP address or host, which means that users of an API
should not have to fill in the IP address themselves.

7. Related Work
The field of web programming is so vast that we cannot possibly
do it justice. We single out two important aspects and try to po-
sition Servant with respect to other libraries and approaches: In
Section 7.1, we look at the implementation of Servant, and in Sec-
tion 7.2, we look at what we achieve, i.e., the relation to other web
programming libraries and DSLs from a user perspective.

7.1 The internals of Servant
The expression problem Our approach to solving the expression
problem is close to that of Lämmel and Ostermann (2006), in that
we essentially use type classes and nothing else. The important
point to keep in mind is that Haskell’s (GHC’s) type system has
evolved significantly since 2006. It is the combination of type
classes with type families and data kinds that makes this approach
so fruitful in our case.

A very popular Haskell solution to the expression problem is
“datatypes à la carte” (Swierstra 2008; Bahr and Hvitved 2011),
which provides a way to “add new constructors” to an already
existing datatype. It works on the term level, which is in principle
appealing. However, we have moved Servant to the type level for a
combination of reasons. Next to the desired extensibility, it allows
us to properly separate the concept of an API from its interpretations
in a type-safe way.

Also related are finally tagless encodings (Carette et al. 2009),
which can achieve an astonishing amount of extensibility by turn-
ing contructors into class methods, and interpretations into in-
stances of the class. While it is entirely conceivable that such an
encoding could be used for Servant, it is not immediately clear how
all our type-level computation would map to such an approach, and
we do believe there is some clarity in having API types around as
manifest first-order types, rather than as a collection of possible
interpretations.

Generic programming Altenkirch and McBride (2003) have ob-
served in the context of general-purpose datatype-generic program-
ming that the choice of the universe (i.e., the set of datatypes) af-
fects what generic programs we can write. In general, the more gen-
eral the universe, the fewer generic functions are supported. This
important fact has been observed again by several people at vari-
ous times and has resulted in a wide variety of generic program-
ming approaches and universes that describe different (sub)sets of
datatypes (Holdermans et al. 2006; Rodriguez et al. 2008).

Servant explores one extreme end of the spectrum. We are using
a deliberately small universe. The API types are not a particularly
simple domain, but one we know a lot about, and this domain-
specific knowledge allows us to define special-purpose “generic”
functions that we otherwise could not. Despite the specific nature,
our DSL has still similarities with general-purpose universes: there
is a strong correspondence between :<|> and binary sums, and
between :> and (list-like) products (Chakravarty et al.; de Vries
and Löh 2014). The way we encode the universes and interpret
them in Haskell is also similar, with the difference that most generic
programming approaches are not concerned with extensibility.

7.2 The externals of Servant
Haskell web frameworks A few Haskell web frameworks provide
ideas that overlap significantly with the features or objectives of
Servant.

Most notably, both Yesod and Happstack (Snoyman 2012;
Happstack Team) use a reified representation of a web service’s
sitemap – i.e., the URL paths that compose its API. This reification
facilitates safety and reuse. Safety, because internal links can be
referred to by their constructor rather than by an opaque string,
which makes uses of non-existent links hard or impossible. And
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reuse, because the sitemap need only be described once. Unlike
Servant, defining how the sitemap datatype maps onto routing is an
extra step, which can however often be dispensed with via the use
of Template Haskell.

Also, handler types in Yesod and Happstack are similarly ex-
pressive as the ones in Servant – they can reflect the types of param-
eters and results. However, there is no independent specification of
the API that can be checked against the handler types at compile
time, or could be used to derive other functionality such as client
functions.

API description languages Closer to the spirit of Servant are ap-
proaches that strive to give a unified treatment of web API descrip-
tions.

The rest (rest-core) and api-tools (Dornan and Gundry) packages
have at their core a datatype representing what in the REST HTTP
web programming paradigm is known as a “resource”. These
datatypes can be composed (possibly along with further routing
information) into full-fledged API descriptions.

Having datatypes represent resources and APIs makes it possi-
ble to develop functionality that operates on these datatype; both
libraries do this to great effect, generating client libraries, docu-
mentation, and (in the case of rest) servers much in the same way
as Servant. They do in some respects even go beyond the base func-
tionality of Servant, offering functionality such as versioning or (in
the case of api-tools) data migrations out of the box.

Because the complete description of the API is only present at
the term level, Haskell client libraries are created via code genera-
tion, and api-tools in general uses Template Haskell to great extent.
Using values of normal datatypes limits extensibility of data, mak-
ing it hard to add new components to the description of a resource
or API besides those already provided by the library authors.

Finally, a number of API modelling languages, such as WSDL
(Christensen et al. 2001), API Blueprint (Blueprint) and RAML (RAML
Workgroup), also provide a standardized format for describing web
APIs, and can be used to automatically derive functionality for those
APIs. The formats used (e.g. JSON) are not full-fledged program-
ming languages, which hampers flexibility and extensibility.

8. Future work and conclusions
The most important conclusion is that Servant actually works – and
it works not just in theory, but in practice. It is in use in several
places, and has an active community of contributors. In that sense,
it has fulfilled and exceeded the expectations of its original authors.

However, the industrial use of Servant has also resulted in sev-
eral new items for the wish list. Among the most prominent features
that will hopefully be implemented soon are out-of-the-box support
to reflect authentication requirements as part of a Servant API (with
the obvious requirement that a user should easily be able to add sup-
port for new mechanisms), and improvements to the routing system
that improve the complexity of dispatching to the right route to be
sublinear in the number of choices (cf. Section 4.9). There have
also been requests for automatic generation of descriptions of Ser-
vant APIs in the modelling languages mentioned in Section 7.2.

Another unrelated but appealing project is to explore the design
space for a Servant-like library in dependently typed languages
such as Agda or Idris. There certainly is a significant amount of
type-level computation happening in Servant. In a dependently
typed language, we could move that back to the term level without
losing any safety. However, it is currently unclear whether there
is then an easy match for our extensibility requirements in these
languages.

Finally, while Servant itself is all about web APIs, the same tech-
nique of domain-specific generic programming can be applied to
other domains. There already is an experimental library providing

a type-level DSL for maintaining configuration data of a given ap-
plication that can be interpreted as e.g. both a configuration file and
a command line parser (Fischmann and Löh 2015). Another ob-
vious application domain is that of database schemas. We believe
that there are many more applications that would benefit from a
first-class and extensible type-level description language that ad-
mits several interpretations.
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