Type-Level Web APIs with Servant
An Exercise in Domain-Specific Generic Programming
WGP 2015, Vancouver

Alp Mestanogullari, S6nke Hahn, Julian K. Arni, Andres L6h

30 August 2015

A Servant web API

type Counter = Get ’[JSON] Int
:<|> "step” :> Post '[1 ()

A Haskell datatype.

A Servant web API

type Counter = Get ’[JSON] Int
:<|> "step” :> Post '[1 ()

GET / obtain the current value
POST /step increment counter

A Servant web API

Get ’[JSON] Int
"step” :> Post '[]1 ()

type Counter = GetCounter :<|> StepCounter

type GetCounter
type StepCounter

GET / obtain the current value
POST /step increment counter

A Servant web API

type GetCounter Get ’[JSON] CounterVal
type StepCounter = "step” :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

newtype CounterVal = CounterVal Int
deriving (Show, Num, FromJSON, ToJSON)

GET / obtain the current value
POST /step increment counter

What can we do with an API type?

Many things, but in particular:

v

generate documentation,
implement a server,

obtain a client,

describe links into the API.

v

v

v

What can we do with an API type?

Many things, but in particular:

v

generate documentation,
implement a server,

obtain a client,

describe links into the API.

v

v

v

The above are supported by Servant out of the box, but
additional “interpretations” can be implemented.

Documentation

Generating documentation

A way to refer to the API type as a value:

counterAPI :: Proxy Counter
counterAPI = Proxy

Generating documentation

A way to refer to the API type as a value:

counterAPI :: Proxy Counter
counterAPI = Proxy

Generating Markdown documentation for the API:

counterDocs :: String
counterDocs = markdown (docs counterAPI)

Generating documentation

A way to refer to the API type as a value:

counterAPI :: Proxy Counter
counterAPI = Proxy

Generating Markdown documentation for the API:

counterDocs :: String
counterDocs = markdown (docs counterAPI)

markdown :: API -> String
docs :: HasDocs api => Proxy api -> API

Fails at compile time because we lack necessary information!

Sample values

Input types are required to be an instance of ToSample :

instance ToSample CounterVal CounterVal where
toSample _ = Just (CounterVal 42)

Documentation example

GET/
Response:

Status code 200
Headers: []
Supported content types are:

v

v

v

» application/json

v

Response body as below.
42

Server

Implementing a server

What we can expect just by having the API type:

» decisions on whether a request is valid or not,
» routing the incoming requests to the right handlers.

What we have to provide ourselves:

» handlers that actually turn inputs into outputs.

The types of handlers

type GetCounter Get ’[JSON] CounterVal
type StepCounter = "step” :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

The types of handlers

type GetCounter = Get ’[JSON] CounterVal

Handler should be “something that produces a CounterVal ”:

Server GetCounter ~ EitherT ServantErr IO CounterVal

The types of handlers

type GetCounter = Get ’[JSON] CounterVal

Handler should be “something that produces a CounterVal”

Server GetCounter ~ EitherT ServantErr IO CounterVal

handleGetCounter :: TVar CounterVal
-> Server GetCounter
handleGetCounter ctr = 1iftIO (readTVarIO ctr)

The types of handlers

type StepCounter = "step” :> Post ’[] ()

Handler should be “something that produces a () ™

Server StepCounter ~ EitherT ServantErr I0 ()

handleStepCounter :: TVar CounterVal
-> Server StepCounter
handleStepCounter ctr =
1iftI0O $ atomically $ modifyTVar ctr (+ 1)

The types of handlers

type Counter = GetCounter :<|> StepCounter

Handler should be a combination of two handlers:

Server Counter ~
(Server GetCounter :<|> Server StepCounter)

handleCounter :: TVar CounterVal

-> Server Counter
handleCounter ctr = handleGetCounter ctr
:<|> handleStepCounter ctr

Running the server

serve :: HasServer api
=> Proxy api —-> Server api -> Application

Running the server

serve :: HasServer api
=> Proxy api —-> Server api -> Application

start :: I0 ()
start = do
initCtr <- newTVarIO 0
run 8000
(serve counterAPI (handleCounter initCtr))

Running the server

serve :: HasServer api
=> Proxy api —-> Server api -> Application

start :: I0 ()
start = do
initCtr <- newTVarIO 0
run 8000
(serve counterAPI (handleCounter initCtr))

Statically checks:

» the presence of handlers for every API part,
» the types of the handlers.

Complete server code
AP with Proxy

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step” :> Post '[]1 ()
type Counter = GetCounter :<|> StepCounter

newtype CounterVal = CounterVal Int
deriving (Show, Num, FromJSON, ToJSON)

counterAPI :: Proxy Counter
counterAPI = Proxy

Handler(s)

handleGetCounter :: TVar CounterVal -> Server GetCounter
handleGetCounter ctr = 1iftIO (readTVarIO ctr)

handleStepCounter :: TVar CounterVal -> Server StepCounter
handleStepCounter ctr = 1iftIO $ atomically $ modifyTVar ctr (+ 1)
handleCounter :: TVar CounterVal -> Server Counter
handleCounter ctr = handleGetCounter ctr

:<|> handleStepCounter ctr

Driver

start :: I0 ()
start = do
initCtr <- newTVarIO 0
run 8000 (serve counterAPI (handleCounter initCtr))

Client

Obtaining a client

client :: HasClient api
=> Proxy api -> BaseUrl -> Client api

getCounter :<|> stepCounter =
client counterAPI (BaseUrl Http "localhost” 8000)

Obtaining a client

client :: HasClient api
=> Proxy api -> BaseUrl -> Client api

getCounter :<|> stepCounter =
client counterAPI (BaseUrl Http "localhost” 8000)

Yields:

getCounter :: EitherT ServantError I0 CounterVal
stepCounter :: EitherT ServantError I0 ()

Interacting with the client

GHCi> runEitherT getCounter

Right (CounterVal 0)

GHCi> runEitherT (stepCounter >> getCounter)
Right (CounterVal 1)

Modifying the API

Making a change

type SetCounter = RegBody ’[JSON] CounterVal
:> Put '[1 O

type Counter = GetCounter
:<|> StepCounter
:<|> SetCounter

Making a change

type SetCounter = RegBody ’[JSON] CounterVal
:> Put '[1 O

type Counter = GetCounter
:<|> StepCounter
:<|> SetCounter

Server and client become type-incorrect.

Adapting the server

Server SetCounter ~
CounterVal -> EitherT ServantErr I0 ()

Adapting the server

Server SetCounter ~
CounterVal -> EitherT ServantErr I0 ()

handleSetCounter :: TVar CounterVal
-> Server SetCounter
handleSetCounter ctr newValue =
1iftIO $ atomically $ writeTVar ctr newValue

handleCounter :: TVar CounterVal -> Server Counter
handleCounter ctr = handleGetCounter ctr

:<|> handleStepCounter ctr

:<|> handleSetCounter ctr

Intermediate summary

Servant consists of:

» atype-level DSL for web APIs.

» a number of interpretations (documentation, server, client,
links, ...) of the DSL.

Intermediate summary

Servant consists of:

» atype-level DSL for web APIs.

» a number of interpretations (documentation, server, client,
links, ...) of the DSL.

Servant is extensible:

» with respect to the DSL constructs,
» and with respect to the interpretations.

Type-level DSL

What is a web API?

» Requests and responses.
» Requests can be constrained in various ways:
path,
parameters,
headers,
body,
method.
» Responses can also be constrained:
» status code,
» headers,
» body.

vV vy vy VvVYy

api = api :<|> api
| item :> api
| method

api = api :<|> api
| item :> api
| method

item ::= symbol

header
RegBody ctypes type
Capture symbol type

QueryParam symbol type

|

|

|

| QueryFlag symbol

|

| QueryParams symbol type
\

api = api :<|> api
| item :> api
| method

method ::= Get ctypes rtype
| Put ctypes rtype
| Post ctypes rtype
| Delete ctypes rtype
| Patch ctypes rtype
| Raw

|

ctypes := ’[ctype, ...]
ctype = PlainText | JSON | HTML | ...

api = api :<|> ap
| item :> api
| method

Mapping to Haskell types:

data apil :<|> api2

infixr 8 :<|>

data (item :: k) :> api

infixr 9 :>

data RegBody (ctypes :: [x]) (t :: %)
data Capture (symbol :: Symbol) (t :: %)
data Get (ctypes :: [x]) (t :: %)

data Post (ctypes :: [*]) (t :: %)

data JSON

Defining interpretations

Each interpretation is a class:

class HasServer api where
type Server api :: *
route :: Proxy api -> Server api
-> RoutingApplication

From the grammar to an interpretation

How to deal with the different syntactic categories?

From the grammar to an interpretation

How to deal with the different syntactic categories?

Option 1: use different classes for each category

class HasServerAPI api
class HasServerItem item
class HasServerMethod method

From the grammar to an interpretation

How to deal with the different syntactic categories?

Option 2: inline productions and do (almost) everything with api

api = api :<|> api

symbol :> api

Header symbol type :> api
ReqgBody ctypes type :> api

Get ctypes (Headers headers type)
Get ctypes type

Structure of a typical interpretation

instance ... => HasServer (apil :<|> api2)

instance ... => HasServer ((sym :: Symbol) :> api)
instance ... => HasServer (Header sym t :> api)
instance ... => HasServer (RegBody ctype t)

instance ... => HasServer (Get ctypes (Headers hs t))

instance ... => HasServer (Get ctypes t)

Content-type handling

Get ’[JSON, HTML, PlainText] MyType

Content-type handling

Get ’[JSON, HTML, PlainText] MyType

class Accept ctype where
contentType :: Proxy ctype -> MediaType

Every content-type descriptor is an instance of Accept .

Rendering and unrendering

class Accept ctype => MimeRender ctype t where
mimeRender ::
Proxy ctype -> t -> ByteString
class Accept ctype => MimeUnrender ctype t where
mimeUnrender ::
Proxy ctype -> ByteString -> Maybe t

Type-level computation is everywhere

In particular:

» the server interpretation computes the type of the handler,

» the client interpretation computes the types of the request
functions,

» the link interpretation computes whether one API fragment
is contained in another,

» the documentation interpretation uses a similar
mechanism to attach additional documentation to specific
parts of the API.

Example: the type of the handler

type Server (apil :<|> api2) =
Server apil :<|> Server api2

type Server ((sym :: Symbol) :> api) =
Server api

type Server (RegBody ctypes t :> api) =
t -> Server api

Extending the language

Adding a new interpretation:

» define a new class
» provide the instances for each of the syntactic constructs

Adding a new language construct:

» define a new datatype
» provide instances for all the interpretations

Current and future work

» Efficient routing.

» Error messages.

» Error handling.

» Authentication.

» CSV content type.

» Javascript client functions.

» Mock server generation.

» Swagger or other API description languages.

Domain-specific generic programming

Datatype-generic programming

Aim: describe many or all datatypes.

Often uses structural combinators to describe the syntax of
datatypes on the type-level:

> sums,
» products.

Generic functions interpret the structure and work for many
datatypes and are robust to change.

Domain-specific generic programming

Aim: describe the syntax of a specific domain on the type-level.
Also uses structural combinators:

» sums (:<[>),

» products (:>).

Generic functions interpret the structure and work for many
inhabitants of the domain and are robust to change.

Other ideas and examples

v

database schemas,
configuration options,

v

v

general context-free grammars,

Conclusion

By putting so much into the type safety, Servant programs

» save a lot of boilerplate,
» are much more robust, concise, and easy to refactor.

Conclusion

By putting so much into the type safety, Servant programs

» save a lot of boilerplate,
» are much more robust, concise, and easy to refactor.

Haskell (with all its current extensions) is mostly up to the task.
Essential:

» type classes,
» type families,
» data kinds, type-level strings, kind polymorphism.

Conclusion

By putting so much into the type safety, Servant programs

» save a lot of boilerplate,
» are much more robust, concise, and easy to refactor.

Haskell (with all its current extensions) is mostly up to the task.
Essential:

» type classes,
» type families,
» data kinds, type-level strings, kind polymorphism.

Domain-specific generic programming can be applied to other
domains as well.

https://haskell-servant.github.io

Julian and Sénke offer a CUFP tutorial on Friday.

