
Type-Level Web APIs with Servant
An Exercise in Domain-Specific Generic Programming
WGP 2015, Vancouver

Alp Mestanogullari, Sönke Hahn, Julian K. Arni, Andres Löh

30 August 2015

A Servant web API

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[] ()

A Haskell datatype.

A Servant web API

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[] ()

GET / obtain the current value
POST /step increment counter

A Servant web API

type GetCounter = Get ’[JSON] Int
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

GET / obtain the current value
POST /step increment counter

A Servant web API

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

newtype CounterVal = CounterVal Int
deriving (Show, Num, FromJSON, ToJSON)

GET / obtain the current value
POST /step increment counter

What can we do with an API type?

Many things, but in particular:

I generate documentation,
I implement a server,
I obtain a client,
I describe links into the API.

The above are supported by Servant out of the box, but
additional “interpretations” can be implemented.

What can we do with an API type?

Many things, but in particular:

I generate documentation,
I implement a server,
I obtain a client,
I describe links into the API.

The above are supported by Servant out of the box, but
additional “interpretations” can be implemented.

Documentation

Generating documentation

A way to refer to the API type as a value:

counterAPI :: Proxy Counter
counterAPI = Proxy

Generating Markdown documentation for the API:

counterDocs :: String
counterDocs = markdown (docs counterAPI)

markdown :: API -> String
docs :: HasDocs api => Proxy api -> API

Fails at compile time because we lack necessary information!

Generating documentation

A way to refer to the API type as a value:

counterAPI :: Proxy Counter
counterAPI = Proxy

Generating Markdown documentation for the API:

counterDocs :: String
counterDocs = markdown (docs counterAPI)

markdown :: API -> String
docs :: HasDocs api => Proxy api -> API

Fails at compile time because we lack necessary information!

Generating documentation

A way to refer to the API type as a value:

counterAPI :: Proxy Counter
counterAPI = Proxy

Generating Markdown documentation for the API:

counterDocs :: String
counterDocs = markdown (docs counterAPI)

markdown :: API -> String
docs :: HasDocs api => Proxy api -> API

Fails at compile time because we lack necessary information!

Sample values

Input types are required to be an instance of ToSample :

instance ToSample CounterVal CounterVal where
toSample _ = Just (CounterVal 42)

Documentation example

GET /

Response:

I Status code 200
I Headers: []
I Supported content types are:

I application/json

I Response body as below.
42

Server

Implementing a server

What we can expect just by having the API type:

I decisions on whether a request is valid or not,
I routing the incoming requests to the right handlers.

What we have to provide ourselves:

I handlers that actually turn inputs into outputs.

The types of handlers

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

The types of handlers

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

Handler should be “something that produces a CounterVal ”:

Server GetCounter ~ EitherT ServantErr IO CounterVal

The types of handlers

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

Handler should be “something that produces a CounterVal ”:

Server GetCounter ~ EitherT ServantErr IO CounterVal

handleGetCounter :: TVar CounterVal
-> Server GetCounter

handleGetCounter ctr = liftIO (readTVarIO ctr)

The types of handlers

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

Handler should be “something that produces a () ”:

Server StepCounter ~ EitherT ServantErr IO ()

handleStepCounter :: TVar CounterVal
-> Server StepCounter

handleStepCounter ctr =
liftIO $ atomically $ modifyTVar ctr (+ 1)

The types of handlers

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()

type Counter = GetCounter :<|> StepCounter

Handler should be a combination of two handlers:

Server Counter ~
(Server GetCounter :<|> Server StepCounter)

handleCounter :: TVar CounterVal
-> Server Counter

handleCounter ctr = handleGetCounter ctr
:<|> handleStepCounter ctr

Running the server

serve :: HasServer api
=> Proxy api -> Server api -> Application

start :: IO ()
start = do
initCtr <- newTVarIO 0
run 8000
(serve counterAPI (handleCounter initCtr))

Statically checks:

I the presence of handlers for every API part,
I the types of the handlers.

Running the server

serve :: HasServer api
=> Proxy api -> Server api -> Application

start :: IO ()
start = do
initCtr <- newTVarIO 0
run 8000
(serve counterAPI (handleCounter initCtr))

Statically checks:

I the presence of handlers for every API part,
I the types of the handlers.

Running the server

serve :: HasServer api
=> Proxy api -> Server api -> Application

start :: IO ()
start = do
initCtr <- newTVarIO 0
run 8000
(serve counterAPI (handleCounter initCtr))

Statically checks:

I the presence of handlers for every API part,
I the types of the handlers.

Complete server code
API with Proxy

type GetCounter = Get ’[JSON] CounterVal
type StepCounter = "step" :> Post ’[] ()
type Counter = GetCounter :<|> StepCounter

newtype CounterVal = CounterVal Int
deriving (Show, Num, FromJSON, ToJSON)

counterAPI :: Proxy Counter
counterAPI = Proxy

Handler(s)

handleGetCounter :: TVar CounterVal -> Server GetCounter
handleGetCounter ctr = liftIO (readTVarIO ctr)

handleStepCounter :: TVar CounterVal -> Server StepCounter
handleStepCounter ctr = liftIO $ atomically $ modifyTVar ctr (+ 1)

handleCounter :: TVar CounterVal -> Server Counter
handleCounter ctr = handleGetCounter ctr

:<|> handleStepCounter ctr

Driver

start :: IO ()
start = do
initCtr <- newTVarIO 0
run 8000 (serve counterAPI (handleCounter initCtr))

Client

Obtaining a client

client :: HasClient api
=> Proxy api -> BaseUrl -> Client api

getCounter :<|> stepCounter =
client counterAPI (BaseUrl Http "localhost" 8000)

Yields:

getCounter :: EitherT ServantError IO CounterVal
stepCounter :: EitherT ServantError IO ()

Obtaining a client

client :: HasClient api
=> Proxy api -> BaseUrl -> Client api

getCounter :<|> stepCounter =
client counterAPI (BaseUrl Http "localhost" 8000)

Yields:

getCounter :: EitherT ServantError IO CounterVal
stepCounter :: EitherT ServantError IO ()

Interacting with the client

GHCi> runEitherT getCounter
Right (CounterVal 0)
GHCi> runEitherT (stepCounter >> getCounter)
Right (CounterVal 1)

Modifying the API

Making a change

type SetCounter = ReqBody ’[JSON] CounterVal
:> Put ’[] ()

type Counter = GetCounter
:<|> StepCounter
:<|> SetCounter

Server and client become type-incorrect.

Making a change

type SetCounter = ReqBody ’[JSON] CounterVal
:> Put ’[] ()

type Counter = GetCounter
:<|> StepCounter
:<|> SetCounter

Server and client become type-incorrect.

Adapting the server

Server SetCounter ~
CounterVal -> EitherT ServantErr IO ()

handleSetCounter :: TVar CounterVal
-> Server SetCounter

handleSetCounter ctr newValue =
liftIO $ atomically $ writeTVar ctr newValue

handleCounter :: TVar CounterVal -> Server Counter
handleCounter ctr = handleGetCounter ctr

:<|> handleStepCounter ctr
:<|> handleSetCounter ctr

Adapting the server

Server SetCounter ~
CounterVal -> EitherT ServantErr IO ()

handleSetCounter :: TVar CounterVal
-> Server SetCounter

handleSetCounter ctr newValue =
liftIO $ atomically $ writeTVar ctr newValue

handleCounter :: TVar CounterVal -> Server Counter
handleCounter ctr = handleGetCounter ctr

:<|> handleStepCounter ctr
:<|> handleSetCounter ctr

Intermediate summary

Servant consists of:

I a type-level DSL for web APIs.
I a number of interpretations (documentation, server, client,

links, . . .) of the DSL.

Servant is extensible:

I with respect to the DSL constructs,
I and with respect to the interpretations.

Intermediate summary

Servant consists of:

I a type-level DSL for web APIs.
I a number of interpretations (documentation, server, client,

links, . . .) of the DSL.

Servant is extensible:

I with respect to the DSL constructs,
I and with respect to the interpretations.

Type-level DSL

What is a web API?

I Requests and responses.
I Requests can be constrained in various ways:

I path,
I parameters,
I headers,
I body,
I method.

I Responses can also be constrained:
I status code,
I headers,
I body.

The grammar

api ::= api :<|> api
| item :> api
| method

The grammar

api ::= api :<|> api
| item :> api
| method

item ::= symbol
| header
| ReqBody ctypes type
| Capture symbol type
| QueryFlag symbol
| QueryParam symbol type
| QueryParams symbol type
| ...

The grammar

api ::= api :<|> api
| item :> api
| method

method ::= Get ctypes rtype
| Put ctypes rtype
| Post ctypes rtype
| Delete ctypes rtype
| Patch ctypes rtype
| Raw
| ...

ctypes ::= ’[ctype, ...]

ctype ::= PlainText | JSON | HTML | ...

The grammar

api ::= api :<|> api
| item :> api
| method

Mapping to Haskell types:

data api1 :<|> api2
infixr 8 :<|>

data (item :: k) :> api
infixr 9 :>

data ReqBody (ctypes :: [*]) (t :: *)
data Capture (symbol :: Symbol) (t :: *)

data Get (ctypes :: [*]) (t :: *)
data Post (ctypes :: [*]) (t :: *)

data JSON

Defining interpretations

Each interpretation is a class:

class HasServer api where
type Server api :: *
route :: Proxy api -> Server api

-> RoutingApplication

From the grammar to an interpretation

How to deal with the different syntactic categories?

From the grammar to an interpretation

How to deal with the different syntactic categories?

Option 1: use different classes for each category

class HasServerAPI api
class HasServerItem item
class HasServerMethod method
...

From the grammar to an interpretation

How to deal with the different syntactic categories?

Option 2: inline productions and do (almost) everything with api

api ::= api :<|> api
| symbol :> api
| Header symbol type :> api
| ReqBody ctypes type :> api
| ...
| Get ctypes (Headers headers type)
| Get ctypes type
| ...

Structure of a typical interpretation

instance ... => HasServer (api1 :<|> api2)
instance ... => HasServer ((sym :: Symbol) :> api)
instance ... => HasServer (Header sym t :> api)
instance ... => HasServer (ReqBody ctype t)
...
instance ... => HasServer (Get ctypes (Headers hs t))
instance ... => HasServer (Get ctypes t)

Content-type handling

Get ’[JSON, HTML, PlainText] MyType

class Accept ctype where
contentType :: Proxy ctype -> MediaType

Every content-type descriptor is an instance of Accept .

Content-type handling

Get ’[JSON, HTML, PlainText] MyType

class Accept ctype where
contentType :: Proxy ctype -> MediaType

Every content-type descriptor is an instance of Accept .

Rendering and unrendering

class Accept ctype => MimeRender ctype t where
mimeRender ::
Proxy ctype -> t -> ByteString

class Accept ctype => MimeUnrender ctype t where
mimeUnrender ::
Proxy ctype -> ByteString -> Maybe t

Type-level computation is everywhere

In particular:

I the server interpretation computes the type of the handler,
I the client interpretation computes the types of the request

functions,
I the link interpretation computes whether one API fragment

is contained in another,
I the documentation interpretation uses a similar

mechanism to attach additional documentation to specific
parts of the API.

Example: the type of the handler

type Server (api1 :<|> api2) =
Server api1 :<|> Server api2

type Server ((sym :: Symbol) :> api) =
Server api

type Server (ReqBody ctypes t :> api) =
t -> Server api

Extending the language

Adding a new interpretation:

I define a new class
I provide the instances for each of the syntactic constructs

Adding a new language construct:

I define a new datatype
I provide instances for all the interpretations

Current and future work

I Efficient routing.
I Error messages.
I Error handling.
I Authentication.
I CSV content type.
I Javascript client functions.
I Mock server generation.
I Swagger or other API description languages.
I . . .

Domain-specific generic programming

Datatype-generic programming

Aim: describe many or all datatypes.

Often uses structural combinators to describe the syntax of
datatypes on the type-level:

I sums,
I products.

Generic functions interpret the structure and work for many
datatypes and are robust to change.

Domain-specific generic programming

Aim: describe the syntax of a specific domain on the type-level.

Also uses structural combinators:

I sums (:<|>),

I products (:>).

Generic functions interpret the structure and work for many
inhabitants of the domain and are robust to change.

Other ideas and examples

I database schemas,
I configuration options,
I general context-free grammars,
I . . .

Conclusion

By putting so much into the type safety, Servant programs

I save a lot of boilerplate,
I are much more robust, concise, and easy to refactor.

Haskell (with all its current extensions) is mostly up to the task.
Essential:

I type classes,
I type families,
I data kinds, type-level strings, kind polymorphism.

Domain-specific generic programming can be applied to other
domains as well.

Conclusion

By putting so much into the type safety, Servant programs

I save a lot of boilerplate,
I are much more robust, concise, and easy to refactor.

Haskell (with all its current extensions) is mostly up to the task.
Essential:

I type classes,
I type families,
I data kinds, type-level strings, kind polymorphism.

Domain-specific generic programming can be applied to other
domains as well.

Conclusion

By putting so much into the type safety, Servant programs

I save a lot of boilerplate,
I are much more robust, concise, and easy to refactor.

Haskell (with all its current extensions) is mostly up to the task.
Essential:

I type classes,
I type families,
I data kinds, type-level strings, kind polymorphism.

Domain-specific generic programming can be applied to other
domains as well.

https://haskell-servant.github.io

Julian and Sönke offer a CUFP tutorial on Friday.

