
Pull-Ups, Push-Downs, and Passing It Around

Exercises in Functional Incrementalization

Sean Leather1, Andres Löh1, and Johan Jeuring1,2

1 Utrecht University, Utrecht, The Netherlands
2 Open Universiteit Nederland

{leather,andres,johanj}@cs.uu.nl

Abstract. Programs in functional programming languages with alge-
braic datatypes are often datatype-centric and use folds or fold-like func-
tions. Incrementalization of such a program can significantly improve
its performance. Functional incrementalization separates the recursion
from the calculation and significantly reduces redundant computation.
In this paper, we motivate incrementalization with a simple example
and present a library for transforming programs using upwards, down-
wards, and circular incrementalization. We also give a datatype-generic
implementation for the library and demonstrate the incremental zipper,
a zipper extended with attributes.

1 Introduction

In functional programming languages with algebraic datatypes, many programs
and libraries “revolve” around a collection of datatypes. Functions in such pro-
grams form the spokes connecting the datatypes in the axle to a convenient API
or EDSL at the perimeter, facilitating the movement of development. These
datatype-centric programs can take the form of games, web applications, GUIs,
compilers, databases, etc. Many libraries are datatype-centric: see finite maps,
sets, queues, parser combinators, and zippers. Datatype-generic libraries with a
structure representation are also datatype-centric.

When programmers develop datatype-centric programs, we observe that they
write a surprising number of functions that can be defined using a fold (a.k.a.
catamorphism) or a fold-like function such as an accumulation [7]. As a primitive
form of recursion, a fold traverses an entire value using an algebra to combine
the fields of constructors and results of subcomputations. In Haskell, we can
define the class of folds using a type class and the related class of algebras as a
type family.

type family Alg t s :: ∗
class Fold t where

fold :: Alg t s→ t→ s

Given some algebra for the type t, the instance of fold for t recursively builds
s-type results upward from the leaves of the (finite) value. Here is an example
for binary trees.

data Tree a = Tip | Bin a (Tree a) (Tree a)

type instance Alg (Tree a) s = (s, a→ s→ s→ s)

instance Fold (Tree a) where
fold (t,) Tip = t
fold alg@(, b) (Bin x tL tR) = b x (fold alg tL) (fold alg tR)

Folds are a well-understood class of functions and are occasionally used in
repetition, unfortunately, to the detriment of the program’s performance. For
example, take the pattern of fold use in following function.

repFold :: (Fold t)⇒ Alg t s→ (t→ t)→ t→ (s, s)
repFold alg f x = let {s = fold alg x ; x’ = f x ; s’ = fold alg x’} in (s, s’)

Given a function and an initial value, repFold applies a fold to x and x’. If x’ only
differs from x in a “small” way (relative to the size of the value), then the second
fold performs a large number of redundant computations. A fold is an atomic
computation: it computes the results “all in one go.” Even in a lazily evaluated
language, there is no sharing between the computations of the two folds.

Our solution is to transform an atomic computation such as repFold into
an incremental computation. Incremental computations take advantage of small
changes to an input to compute a new output. The key is to subdivide an com-
putation into smaller parts and reuse the subresults to compute the final output.

Our focus in this article is the incrementalization of purely functional pro-
grams with folds and fold-like functions. In general, incrementalization is the
transformation of a program from having atomic computations to having the
same results computed incrementally. To incrementalize a program with a fold,
we separate the the application of the algebra from the recursion. We merge the
algebra with the constructors and replace the single recursive function with the
the recursion already present in other functions of the program.

The presentation of our work begins in Section 2 with a motivating exam-
ple for incrementalization: we take a well-known library, incrementalize it, and
compare the performance. Then, in Section 3, we generalize the work from Sec-
tion 2—which we call “upwards” incrementalization—and produce a library of
tools for incrementalization. Sections 4 and 5 develop two alternative forms of
incrementalization, “downwards” and “circular.” We generalize even further in
Section 6 to show that the tools from the previous three sections can also be
used with a fully datatype-generic representation of datatypes. In Section 7, we
describe the incremental zipper, a structure than can take an incrementalized
datatype to a zipper, supporting navigation and edit functionality while simulta-
neously preserving incrementality. Lastly, we round up with a general discussion
and some related work in Section 8 and conclude in Section 9.

2 A Motivating Example

We introduce the library Set as a basis for understanding incrementalization.
Starting from a simple, naive implementation, we systematically transform it to
a more efficient, incrementalized version.

The Set library has the following programming interface.

empty :: Set a
singleton :: a→ Set a
size :: Set a→ Int

insert :: (Ord a)⇒ a→ Set a→ Set a
fromList :: (Ord a)⇒ [a]→ Set a
fold :: (s, a→ s→ s→ s)→ Set a→ s

The interface is comparable to the Data.Set library provided with the Haskell
Platform.

Semantically, a value of Set a is a “container” of a-type elements such that
each element is unique. The Set type is abstract to the programmer, and we (the
library developers) may change the implementation as we see fit. We implement
the underlying data structure as an ordered, binary search tree [2].

type Set a = Tree a

We have several options for constructing sets. Simple construction is per-
formed with empty and singleton (trivially defined with the constructors of Tree),
and larger sets can be built from arbitrary lists of elements.

fromList = foldl (flip insert) empty

The function fromList uses another function from our interface, insert, which
builds a new set given an old set and an additional element. This is where the
ordering aspect is used.

insert x Tip = singleton x
insert x (Bin y tL tR) = case compare x y of

LT → balance y (insert x tL) tR

GT→ balance y tL (insert x tR)
EQ→ Bin x tL tR

We use the balance1 function to maintain an invariant that the the structure of
the tree always has logarithmic access time to any element.

balance x tL tR | sL + sR 6 1 = Bin x tL tR

| sR > 4 ∗ sL = rotateL x tL tR

| sL > 4 ∗ sR = rotateR x tL tR

| otherwise = Bin x tL tR

where sL = size tL

sR = size tR

This function uses the size of each subtree to determine how to rotate nodes
between subtrees. The functions rotateL and rotateR are not important for this
discussion, but note that they use the sizes of even deeper subtrees to determine
the number of nodes to rotate. We implement size using the instance of the Fold
class defined earlier for the Tree datatype.
1 It is not important for our purposes to understand the details of balancing a binary

search tree. We refer the reader to [2] for details on the design.

sizeAlg = (0, λ sL sR → 1 + sL + sR)
size = fold sizeAlg

The Set library presented here seems reasonable; however, once the program-
mer starts using it, she quickly realizes that it is quite slow. The primary issue
is the repetitive use of size. As we have seen, size is used in balance, rotateL, and
rotateR. Realizing that size is defined as a fold leads us to deduce that we have
a situation like that of repFold. It is especially depressing that size is computing
a result for subtrees immediately after computing the result for the enclosing
parent. These are redundant computations, and the subresults should be reused.
In fact, size is an atomic function that is ideal for incrementalization.

The key point to first realize is that we want to store intermediate results of
computations on Tree values. We start by allocating space for storage.

data Tree a = Tip Int | Bin Int a (Tree a) (Tree a)

We need to keep around the result of a fold, and the logical locations are the
recursive points of the datatype. In other words, we annotate each constructor
with an additional field to contain the size of that Tree value. As a result of this
transformation, the function size can be redefined to extract the annotation.

size (Tip s) = s
size (Bin s) = s

The next step is to implement the part of the fold that applies the algebra
to a value. To avoid obfuscating our code, we create an API for Tree values by
lifting the structural aspects to a type class.

class TreeS t a | t→ a where
tip :: t
bin :: a→ t→ t→ t
caseTree :: t→ r→ (a→ t→ t→ r)→ r

The following instance of TreeS permits us to use the smart constructors tip and
bin for introduction and the method caseTree instead of the case expression for
elimination.

instance TreeS (Tree a) a where
tip = Tip (fst sizeAlg)
bin x tL tR = Bin (snd sizeAlg x (size tL) (size tR)) x tL tR

caseTree n t b = case n of {Tip → t ; Bin x tL tR → b x tL tR}

We have separated the components of sizeAlg and merged them with the con-
structors, in effect creating an initial algebra that computes the size.

For the finishing touch, we adapt the implementation to use our new datatype
and functions.

insert x t = caseTree t (singleton x)
$ λy tL tR → case compare x y of

LT → balance y (insert x tL) tR

GT→ balance y tL (insert x tR)
EQ→ bin x tL tR

The refactoring is not difficult, but we need to verify that we achieved our
objective: speed-up of the Set library.

To benchmark our work, we compare two implementations of fromList, one
with an atomic size and the other with the incrementalized library. We con-
structed a Set from the list of words for each of three text inputs of increasing
word count.

5911 16523 26234 words
Atomic 0.56 2.79 8.63 seconds
Incremental 0.02 0.06 0.10

It is evident from these results that incrementalization had a significant effect
on the performance of the insert function.

In the next section, we generalize the steps taken to incrementalize Set, so
that we can concretely define the components of incrementalization. With the
generalized approach, we no longer directly transform a program, but instead
develop a library of tools for incrementalization.

3 Generalizing to Upwards Incrementalization

In this section, we take the process used in Section 2 to incrementalize the
Set library and create some reusable components and techniques that can be
applied to incrementalize another program. We call the approach used in this
section upwards incrementalization, because we draw the results upward through
the tree-like structure of an algebraic datatype value.

The first step we took in Section 2 was to allocate space for storing inter-
mediate results. As mentioned, the logical locations for storage are the recursive
points of a datatype. That leads us to identify the fixed-point view as a natural
representation.

newtype Fix f = In {out :: f (Fix f)}

The type Fix encapsulates the recursion of some functor type f and allows us
access to each recursive point. We use a second datatype to extend the fixed-
point with storage for the results.

data Ext1 s f r = Ext1 s (f r)

The type Ext1 pairs a single intermediate result called an annotation with a
functor. Combined, Fix and Ext1 give us an extended fixed-point representation.

type Fix1 s f = Fix (Ext1 s f)

We supplement this with some helper functions.

in1 :: s→ f (Fix1 s f)→ Fix1 s f
out1 :: Fix1 s f→ f (Fix1 s f)
ann :: Fix1 s f→ s

The representation of Tree is now split into the type-specific functor (with the
appropriate Functor instance) and the extended fixed-point.

data TreeF a r = TipF | BinF a r r

type TreeU a = Fix1 Int (TreeF a)

With TreeU in this form, the size function is now synonymous with ann.
The Fix1 representation allows us to generalize more aspects of incremental-

ization, namely the approach to implementing folds. We exchange the previous
algebra type, Alg, for AlgU and the Fold class for IncrU .

type family AlgU (f :: ∗ → ∗) s :: ∗
class IncrU f where

pullUp :: AlgU f s→ f s→ s

Interestingly, this is the same approach often seen in the datatype-generic liter-
ature for the fixed-point fold. We are capturing only the part of the fold that
applies the algebra. We leave the recursion to the remainder of the functions in
the library that perform it (e.g. insert). The instances for TreeF are straightfor-
ward.

type instance AlgU (TreeF a) s = (s, a→ s→ s→ s)

instance IncrU (TreeF a) where
pullUp (t,) TipF = t
pullUp (, b) (BinF x sL sR) = b x sL sR

Note that the type instance AlgU (TreeF a) s) has the same type as the instance
Alg (Tree a) s. Also, the pullUp instance for TreeF is similar to the fold instance
for Tree, excluding the recursive calls.

The Fix1 type now comes back into the picture to construct incrementalized
values. The function inU takes an algebra and an unannotated functor, extracts
the annotations from the children, applies the algebra to get an annotation, and
pairs the annotation with the functor.

inU :: (IncrU f,Functor f)⇒ AlgU f s→ f (Fix1 s f)→ Fix1 s f
inU alg fx = in1 (pullUp alg (fmap ann fx)) fx

The construction of TreeU values can be hidden, as in Section 2, using the TreeS

class.

instance TreeS (TreeU a) a where
tip = inU sizeAlg TipF

bin x tL tR = inU sizeAlg (BinF x tL tR)
caseTree n t b = case out1 n of {TipF → t ; BinF x tL tR → b x tL tR}

Conveniently, the previous definition of insert does not need to change.

The work of this section gives a successful generalization of upwards incre-
mentalization. We can package the components shown into a library and use
that library to incrementalize datatype-centric programs. However, unlike many
libraries that provide an API (e.g. Set), for incrementalization to be effective,
the user should use the functor representation instead of the standard algebraic
datatype. That is primarily why incrementalization is a transformation and not
a collection of functions. Fortunately, functors such as TreeF (and their Functor
instances) can be automatically generated with tools like Template Haskell [16],
and we have shown how to define a type class to mask the usage of the library.

In the next two sections, we diverge from redefining Set to discuss other forms
of incrementalization. The algebras will be different, but we continue to use the
TreeF type for concrete examples.

4 Downwards Incrementalization

There are other directions that incrementalization can take. We have already
demonstrated upwards incrementalization which involves passing values from
the children to the parent. The obvious dual is downwards incrementalization,
passing values from parent to children. In this direction, we accumulate the result
of calculations using information from the ancestors of a node.

As with the upwards direction, the result of incremental computations is
stored as an annotation. To distinguish between the two, we borrow some lan-
guage from attribute grammars [11]: a downwards annotation is inherited by the
children while an upwards annotation is synthesized for the parent.

We introduce the algebra type AlgD and type class IncrD for defining down-
wards incrementalization.

type family AlgD (f :: ∗ → ∗) i :: ∗
class IncrD f where

pushDown :: AlgD f i→ f s→ i→ f i

The intention of pushDown is that we take an inherited value from the parent,
apply the algebra, and pass on the results to the children. The function only
needs the structure of the container argument, not the values, so we give the
elements an “unknowable” type s.

Following the example in Section 3 with the tree functor, we define its down-
wards instances as follows. The algebra is defined as a tuple of functions in
which each function takes as parameters all of the non-recursive fields plus an
incremental value from the parent.

type instance AlgD (TreeF a) i = (i→ TreeF a i, a→ i→ TreeF a i)

The pushDown function performs case analysis on a value and applies the ap-
propriate component of the algebra to the fields of that constructor and the
inherited value.

instance IncrD (TreeF a) where
pushDown (t,) TipF = t
pushDown (, b) (BinF x) = b x

The evaluation of pushDown alg fs i should be a value fi that is structurally
equivalent to fs but with its recursive points filled with inherited values for the
children.

Similar to the incremental construction inU, we define a function inD for
downwards incrementalization, but its requirements are somewhat different. We
no longer pull synthesized values up, but rather push inherited values down. The
function pushDown provides a functor of inherited values, and we need to merge
this with a functor of Fix1 values (the argument to inD). This calls for a generic
zipWith function. We might use any one of the datatype-generic programming
libraries, but to make this article complete, we will use a type class.

class ZipWith f where
zipWith :: (a→ b→ c)→ f a→ f b→ f c

We can now define inD.

inD :: (IncrD f,ZipWith f)⇒ AlgD f i→ i→ f (Fix1 i f)→ Fix1 i f
inD alg ini fx = in1 ini (zipWith push (pushDown alg fx ini) fx)

where push i = inD alg i ◦ out1

Besides the obvious uses of pushDown over pullUp and zipWith over fmap, there
are several other differences from inU: the annotation comes directly from an
initial inherited value, and the constructor is modified via recursive applications
of pushDown. We will return to these points momentarily, but let us first see an
example of downwards incrementalization.

A simple example is calculating the depth of each node from the root. We
can define an atomic depths function on Tree to do this.

depths :: Tree a→ Tree Int
depths Tip = Tip
depths (Bin tL tR) = Bin 1 (fmap (+1) (depths tL)) (fmap (+1) (depths tR))

The incrementalization of depths needs an algebra and an initial value.

depthAlg = (const TipF, λx i→ let i’ = 1 + i in BinF x i’ i’)
depthIni = 1

We use inD in the smart constructors of the instance of TreeS .

instance TreeS (Fix1 Int (TreeF a)) a where
tip = inD depthAlg depthIni TipF

bin x tL tR = inD depthAlg depthIni (BinF x tL tR)
caseTree n t b = case out1 n of {TipF → t ; BinF x tL tR → b x tL tR}

The instance of ZipWith for TreeF necessary for inD is trivial to define. To demon-
strate how to access the downwards incremental values, we define a look-up func-
tion for the depth of a particular element in a binary search tree such as we used
for the Set library.

depthOf k t = caseTree t Nothing
$ λx tL tR → case compare k x of

EQ→ Just (ann t)
LT → depthOf k tL

GT→ depthOf k tR

Returning to points raised before the example, we should highlight the use
of recursion in inD. As we claimed earlier, the goal of incrementalization is to
improve efficiency for some kinds of computation, and that remains true for
downwards incrementalization. Algebraic datatypes are naturally constructed
in a bottom-up manner, but inD requires pushing the computation down the
tree, thus resulting in rebuilding the entire functor argument. We can avoid this
redundancy by memoizing inD on the inherited value.

There are several options for memoization from which we might choose. GHC
supports a rough form of global memoization using stable name primitives [13].
Generic tries may be used for purely functional memo tables [8] in lazy lan-
guages. In general, the best choice for memoization is strongly determined by
the algebra used, but the options above present potential problems when used
with incrementalization. They create a memo table for every node in a tree, and
this can lead to an undesirable space explosion. For example, if the memo table
at every node in the depth example contains two entries, then the size of the
incrementalized value is triple the size of an unincrementalized one. To avoid
potential space issues, we implement memoization with a table size of one and
an equality check. The following re-definition of inD introduces the memoization
in the local function push.

inD :: (IncrD f,ZipWith f,Eq i)⇒ AlgD f i→ i→ f (Fix1 i f)→ Fix1 i f
inD alg ini fx = in1 ini (zipWith push (pushDown alg fx ini) fx)

where push i x | i ann x = x
| otherwise = inD alg i (out1 x)

Note that top-level calls to inD are not memoized, because they always construct
new values.

The downwards direction puts an interesting about-face on purely func-
tional incrementalization. Combining downwards with upwards incrementaliza-
tion leads us to another interesting twist: circular incrementalization.

5 Circular Incrementalization

Circular incrementalization merges the functionality of upwards and downwards
incrementalization to allow for much more interesting algebras. Incremental val-
ues may not only pass from the children to the parent but also in the reverse
direction. We also add the possibility for the upwards result of the root to be
used to produce the initial downwards value. Even the downwards result of each
leaf is fed into the upwards incremental function. The path of values thus creates
a circle of dependencies.

We are merging the functionality of the two previous sections, so we first
merge their representation. We now annotate the fixed-point representation with
both inherited and synthesized values.

data Ext2 i s f r = Ext2 i s (f r)
type Fix2 i s f = Fix (Ext2 i s f)

Here are some functions (defined in the obvious way) that will be useful as we
explore circular incrementalization.

in2 :: i→ s→ f (Fix2 i s f)→ Fix2 i s f
out2 :: Fix2 i s f→ f (Fix2 i s f)
syn :: Fix2 i s f→ s
inh :: Fix2 i s f→ i

The new algebra type and the type class specifying its application also merge
the declarations of Sections 3 and 4.

type family AlgC (f :: ∗ → ∗) i s :: ∗
class IncrC f where

passAround :: AlgC f i s→ f s→ i→ (s, f i)

The function passAround joins the parameters of pullUp :: AlgU f s→ f s→ s and
pushDown :: AlgD f i→ f s→ i→ f i and tuples the outputs. Unlike in pushDown,
here we use the synthesized values of the children as we did with pullUp. The
instance for TreeF will help illuminate the purpose of IncrC .

type instance AlgC (TreeF a) i s = (i→ (s,TreeF a i), a→ s→ s→ i→ (s,TreeF a i))

instance IncrC (TreeF a) where
passAround (t,) TipF = t
passAround (, b) (BinF x sL sR) = b x sL sR

The AlgC instance for TreeF is defined by tupling both the parameters and the
results of the previous instances of AlgU and AlgD (followed by currying the pa-
rameters). It is important for circularity that the leaf node of a value (here the
TipF) always have a function of the form i→ s in its algebraic component. Defin-
ing the passAround function is straightforward given the convenient arrangement
of the algebraic components.

To construct values, we adapt the definitions of inU and inD into a new func-
tion, inC, that accumulates both synthesized and inherited values.

inC :: (IncrC f,Functor f,ZipWith f,Eq i)
⇒ AlgC f i s→ (s→ i)→ f (Fix2 i s f)→ Fix2 i s f

inC alg top fx = in2 ini s (zipWith push fi fx)
where ini = top s

(s, fi) = passAround alg (fmap syn fx) ini
push i x | i inh x = x

| otherwise = inC alg (const i) (out2 x)

The expression ini = top s handles the wrapping of the upwards result to the
downward path at the root level, but we do not pass this function down. Instead,

we use const i to pass only the inherited result downwards. By following the uses
of synthesized and inherited values in inC, we see the inherent circular program-
ming [4]. A circular program uses lazy evaluation to avoid multiple traversals,
and this is key to allowing us to define circular incrementalization.

Circular incrementalization lets us solve more interesting problems than al-
lowed by either previous form of incrementalization. Among these problems is
the “repmin” problem [4] used to introduce circular programming, but we shall
solve a problem that has been used to show why attribute grammars matter.
Wouter Swierstra [17] describes the issue of writing an efficient and readable
program to calculate the difference of each value in a list from the average of
all values in the list. The naive and inefficient implementation gives a precise
meaning to the idea.

diff :: [Float]→ [Float]
diff xs = let avg ys = sum ys / genericLength ys in map (λx→ x− avg xs) xs

Swierstra implements this function both with an efficient though complex def-
inition in Haskell and with a simpler attribute grammar specification for the
UUAG system. We can translate the specification directly to a circular incre-
mental algebra for TreeF (or any other functor).

We translate the attributes into two parts: annotations and an algebra. In
the declarations of the synthesized and inherited annotations, we give the types
along with useful names.

data DiffS = DS {sums :: Float, sizes :: Float, diffs :: Float}
newtype DiffI = DI {avgi :: Float}

The synthesized annotations include sums for the total value of all the Floats,
sizes for the total count, and the final result of the computation, diffs. The one
inherited value, avgi, is the same value computed by avg above. We translate the
semantic functions of the attributes to the following algebra.

diffAlg = (t, b)
where t = (DS {sums = 0, sizes = 0, diffs = 0},TipF)

b x sL sR i = (s ,BinF x i i)
where s = DS {sums = x + sums sL + sums sR

, sizes = 1 + sizes sL + sizes sR

, diffs = x− avgi i}

For the synthesized annotations, the initial values are given in the TipF com-
ponent, and the computations in the BinF component. The definitions for sums,
sizes, and diffs are all as expected, and the inherited values are passed onto
the children without modification. The top-level function computes the average
using the synthesized sum and size.

diffFun s = DI {avgi = sums s / sizes s}

As usual, we define a TreeS instance for the smart constructors.

instance TreeS (Fix2 DiffI DiffS (TreeF Float)) Float where
tip = inC diffAlg diffFun TipF

bin x tL tR = inC diffAlg diffFun (BinF x tL tR)
caseTree n t b = case out2 n of {TipF → t ; BinF x tL tR → b x tL tR}

Now, we can define the incrementalized version of diff.

diffC :: (TreeS (Fix2 i DiffS f) a,TreeS t Float)⇒ Fix2 i DiffS f→ t
diffC n = caseTree n tip (λ tL tR → bin (diffOf n) (diffC tL) (diffC tR))

Of course, if we only need to get the difference for any one node, we only need
to use diffOf.

diffOf :: Fix2 i DiffS f→ Float
diffOf = diffs ◦ syn

This function would be a more efficient use of incrementalization, since it involves
less reconstruction of values.

This section concludes our look at the various forms of incrementalization.
In the next section, we explore a more generic representation. In Section 7, we
delve into an interesting use of incrementalized values, the zipper.

6 Datatype-Generic Incrementalization

We have shown that incrementalization can be generalized from the approach
used in Set to components provided by a library and usable for any datatype
represented as a fixed-point. With circular incrementalization for example, the
library user must provide instances of IncrC , Functor , and ZipWith. In fact, we
can generalize even further to the point where the user must only provide a
representation of the datatype. To do this, we use pattern functors.

Pattern functors are functor types that represent the structure of a datatype
with recursive points. They are ideal for defining generic functions such as folds,
rewriting [19], and the zipper. As we have seen, incrementalization generalizes
well with a fixed-point view, so pattern functors are a natural extension.

We use the following pattern functor datatypes.

newtype K a r = K a
newtype I r = I r
data U r = U
data (f :∗: g) r = f r :∗: g r
data (f :+: g) r = L (f r) | R (g r)

These represent the constant types (K), recursive locations (I), nullary construc-
tors (U), constructor fields (:∗:), and alternatives (:+:). To model the Tree struc-
ture with pattern functors, we can define an instance of TreeS .

type TreePF a = U :+: K a :∗: I :∗: I

instance TreeS (Fix (TreePF a)) a where

tip = In (L U)
bin x tL tR = In (R (K x :∗: I tL :∗: I tR))
caseTree n t b = case out n of {L U→ t ; R (K x :∗: I tL :∗: I tR)→ b x tL tR}

To get incrementalization, we must be able to use inU, inD, or inC here instead
of In.

As it turns out, incrementalization of pattern functors is straightforward. We
simply define instances of any of the incremental classes that we want. There
are too many to list, but here are a few interesting instances for circular incre-
mentalization2.

type instance AlgC I i s = s→ i→ (s, i)

instance IncrC I where
passAround f (I x) = second I ◦ f x

type instance AlgC (I :∗: g) i s = s→ i→ (AlgC g i s, i)

instance (IncrC g)⇒ IncrC (I :∗: g) where
passAround f (I x :∗: y) i = let (g, i’) = f x i

(s, gi) = passAround g y i
in (s, I i’ :∗: gi)

Note that the AlgC I instance for recursive points does not return the structure.
Unlike the instance for AlgC (TreeF a), this is a guarantee we have when working
with pattern functors: the types define (and abstract over) the structure, so we
only compute the inherited and synthesized values.

Suppose that we wanted to incrementalize the type TreePF with the diff alge-
bra as we did before. The new diffAlgPF can use the same types, but the structure
of the components must account for the structure of the representation. Notably,
the single function b in diffAlg is now a function bL that generates a function bR.

diffAlgPF = (t, bL)
where bL x sL iL = (bR, iL)

where bR sR iR = (s, iR)
. . .

The functions bL and bR are associated with recursive points in the R alternative
of TreePF.

To complete the incrementalization of the pattern functor representation, we
need only define the expected instance of TreeS ; however, we must still fulfill
some obligations in order to do that. Recall that inC requires the datatype to
have an instance of Functor and ZipWith. The pattern functor instances for these
classes and the instance of TreeS for Fix2 DiffI DiffS (TreePF Float) are not difficult
to define. We leave them as an exercise for the reader.

With all of the aforementioned type class instances in our library, we can
now more easily incrementalize a program with datatypes represented as pattern
functors. The library user only needs to provide or generate the representation.

2 We use the function second :: (Arrow a)⇒ a b c→ a (d, b) (d, c) for convenience.

7 The Incremental Zipper

One interesting extension to the story on incrementalization is the design of
an incremental zipper. The zipper [9] is a technique for navigating and editing
a value of an algebraic datatype. We can make the zipper even more useful by
incrementalizing it, allowing values to be computed incrementally as we navigate
and edit the zipper. For this section, we rely significantly on the definition of the
zipper as defined in [14], though we define ours for only one type, not a family
of mutually recursive types. To save space, we attempt to present only what is
new here.

To introduce the zipper, we first present the type class Zipper for functors.

class (Functor f)⇒ Zipper f where
fill :: Ctx f r→ r→ f r
first :: (r→ Ctx f r→ a)→ f r→ Maybe a
next :: (r→ Ctx f r→ a)→ Ctx f r→ r→ Maybe a

The instances of Zipper and uses of its methods follow much the same pattern
described in [14]. For example, fill is used when navigating up the zipper to plug
the hole created by the context, Ctx f r, with the current value of the focus, r.
Likewise, first is used for going down, and next for going right.

The context is defined as a type-indexed datatype whose constructors com-
bine to create a derivative of the index type [12].

data family Ctx (f :: ∗ → ∗) :: ∗ → ∗

The instances of the Ctx can be defined directly from [14].
A zipper is usually referenced by its current location. The location is tradi-

tionally defined as an expression (the focus) and a collection of one-hole contexts.

data Loc :: ∗ → ∗ → (∗ → ∗)→ ∗where
Loc :: (Zipper f, IncrC f,ZipWith f,Eq i)

⇒ AlgC f i s→ (s→ i)→ Fix2 i s f→ [Ctx f (Fix2 i s f)]→ Loc i s f

For the incremental zipper, we use the generalized algebraic datatype Loc with
constraints that ensure that we have the proper instances defined (while not
revealing them to casual observers for convenience). The fields of the Loc con-
structor include the focus as an incrementalized fixed-point and the list of con-
texts. In order to support incrementalization, Loc also stores the same algebra
and top-level function used by inC.

In our incremental zipper library, we define the following functions for con-
structing, navigating, and editing zippers.

enter :: (Zipper f, IncrC f,ZipWith f,Eq i)
⇒ AlgC f i s→ (s→ i)→ Fix2 i s f→ Loc i s f

leave :: Loc i s f→ Fix2 i s f
up :: Loc i s f→ Maybe (Loc i s f)
down :: Loc i s f→ Maybe (Loc i s f)

right :: Loc i s f→ Maybe (Loc i s f)
update :: (Functor (Ctx f))⇒ (Fix2 i s f→ Fix2 i s f)→ Loc i s f→ Loc i s f

Most of these functions can be defined by translation from [14]. One, however,
requires a more thorough look. The function update requires not only that we
update the focus (as is evident from the signature), but that we must also update
the contexts. In circular incrementalization, values are passed via functions from
the bottom to the top of the value and vice versa. Consequently, a local change
in a subexpression may result in a larger change to the entire value.

In order to modify the value in the definition of update, we need to update
the annotations of the contexts as we do with the focus. Recall the type of
passAround.

passAround :: (IncrC f)⇒ AlgC f i s→ f s→ i→ (s, f i)

Unfortunately, we cannot simply use the same algebra AlgC on the context that
we have on the focus. Instead, we treat each context as a functor with a hole.
The top-down view of the context produces an s and takes a single i-value. The
view from the bottom appears takes an s-value and produces an i. The result is
a function s→ i→ (s, i) for a context. We extend the Zipper class with methods
for the above two operations.

class (Functor f)⇒ Zipper f where
. . .
fills :: (Zipper g)⇒ Ctx f (Fix2 i s g)→ s→ f s
seeki :: Ctx f s→ f i→ i

The first function, fills, performs a similar task to fill, except that it fills the
recursive points with the synthesized annotation instead of the focus. The second,
seeki, performs a zip-like search of a context and i-filled focus to find the hole in
the context. With the hole, we know which inherited value to give to the focus.
Combining these functions produces the following.

digest :: (Zipper f,Zipper g, IncrC f)⇒ AlgC f i s→ Ctx f (Fix2 i s g)→ s→ i→ (s, i)
digest alg c s = second (seeki c) ◦ passAround alg (fills c s)

The update function uses digest when traversing the list of contexts, pushing
synthesized values to the parent (the next context) and inherited values to the
children (both the previous context and enclosed subexpressions).

8 Discussion and Related Work

In this section, we discuss various aspects of incrementalization as well as com-
pare to related work.

8.1 Form of Incrementalizable Functions

The form of incrementalization that we have presented allows us to transform
a program (esp. a datatype-centric one) with functions defined in certain ways

into a program with the same functions defined incrementally. For upwards in-
crementalization, that “certain way” is the fold. We gave the example of size
defined as a fold and transformed it. For downwards and circular incremental-
ization, defining the form of the non-incrementalized function requires looking
at Gibbons’ accumulations [7].

Downward accumulations, for example, pass information from the root to the
leaves. They can be written using the paths function, declared as a type class.

data family Thread (f :: ∗ → ∗) a :: ∗
class (Functor f)⇒ Paths f where

paths :: f a→ f (Thread f a)

The paths function replaces every element in a container with a thread containing
that element and the path back to the root. A value of the type-indexed datatype
Thread mirrors a path from the root to a node of the type f. We can see this in
the Thread instance for Tree (as defined in Section 1).

data instance Thread Tree a = TT a | TL (Thread Tree a) a | TR (Thread Tree a) a

The downwards accumulation function is written using paths and a Fold instance
for the Thread instance.

accumD :: (Fold (Thread f a),Paths f)⇒ Alg (Thread f a) s→ f a→ f s
accumD alg = fmap (fold alg) ◦ paths

In order to use accumD, we need the algebra for the thread. Given an algebra
for the Tree thread, e.g. (a → s, s → a → s, s → a → s), we can easily rewrite
depths from Section 4 as a downwards accumulation. Similarly, many functions
that can be written as accumulations can also be incrementalized and vice versa.

8.2 Attribute Grammars

In some ways, incrementalization appears similar to attribute grammars [11]. The
attributes for nodes in a value are defined by the algebra for that value’s type,
and Fokkinga, et al [6] prove that attribute grammars can be translated to folds.
This similarity is the reason we used the terms “inherited” and ”synthesized”
for the annotations.

Saraiva, et al [15] demonstrate incremental attribute evaluation for a purely
functional implementation of attribute grammars. They transform syntax trees
to improve the performance of incremental computation. Our approach is con-
siderably more “lightweight” since we write our programs directly in the target
language (e.g. Haskell) instead of using a grammar or code generation. On the
other hand, we lack the significant boost to performance available to them by
rewriting the syntax tree.

Viera, et al [20] describe first-class attribute grammars in Haskell. Their
approach ensures the well-formedness of the grammar and allows for combining
attributes using type-level programming. Our approach to combining attributes
is more ad-hoc and we do not ensure well-formedness; however, we believe our
approach is much simpler to understand and implement. We also show that our
techniques can improve the performance of a library.

8.3 Incremental Computing

Our initial interest in incremental computing was inspired by Jeuring’s work on
incremental algorithms for lists [10]. We show that incremental algorithms can
also be defined not just on lists but on many algebraic datatypes.

Carlsson [5] translates an imperative ML library supporting high-level incre-
mental computations [1] into a monadic library for Haskell. His approach relies
on references to store intermediate results and requires explicit specification of
the incremental components. In contrast, our approach uses the structure of the
datatype to determine where annotations are placed, and we can hide the incre-
mentalization using techniques such as smart constructors and type classes such
as TreeS .

8.4 Incremental Zipper

In Section 7, we define a library for a generic incremental zipper. Uustalu and
Vene [18] implement a zipper using comonadic functional attribute evaluation.
Coming from the angle of dataflow, they arrive at a similar conclusion to ours;
however, they neither identify the algebra of attributes nor describe a completely
generic zipper.

Bernardy [3] defines a lazy, incremental, zipper-based parser for the text
editor Yi. His implementation is rather specific to its purpose and lacks an ap-
parent generalization to other datatypes. Further study is required to determine
whether Yi can take advantage of an incremental zipper as we have shown.

9 Conclusion

We have presented a number of exercises in purely functional incrementalization
using Haskell and datatype-generic programming. Incrementalizing programs de-
couples recursion from computation and storing intermdediate results. Thus, we
remove redundant computation and improve the performance of some programs.
By utilizing the fixed-point structure of algebraic datatypes, we demonstrate a
library that captures all the elements of incrementalization for folds and accu-
mulations. We have also introduced the incremental zipper, a library that can be
used with incrementalized datatypes to support incremental computation while
editing a value.

Acknowledgements Edward Kmett wrote a blog entry in response to one
of our own with some insightful observations. This research has been partially
funded by the Netherlands Organization for Scientific Research (NWO), through
the project on “Real-life Datatype-Generic Programming” (612.063.613).

References

1. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional pro-
gramming. In POPL 2002, pages 247–259. ACM, 2002.

2. Stephen Adams. Functional Pearls: Efficient sets – a balancing act. J. of Functional
Programming, 3(04):553–561, 1993.

3. Jean-Philippe Bernardy. Lazy Functional Incremental Parsing. In Haskell 2009,
pages 49–60. ACM, 2009.

4. R. S. Bird. Using Circular Programs to Eliminate Multiple Traversals of Data.
Acta Informatica, 21(3):239–250, October 1984.

5. Magnus Carlsson. Monads for incremental computing. In ICFP 2002, pages 26–35.
ACM, 2002.

6. Maarten M. Fokkinga, Johan Jeuring, Lambert Meertens, and Erik Meijer. A
Translation from Attribute Grammars to Catamorphisms. 2(1):20–26, 1991.

7. Jeremy Gibbons. Upwards and downwards accumulations on trees. In MPC 1993,
pages 122–138, 1993.

8. Ralf Hinze. Memo functions, polytypically! In Johan Jeuring, editor, WGP 2000:
Proceedings of the Second Workshop on Generic Programming, July 2000.

9. Gérard Huet. The Zipper. J. of Functional Programming, 7(05):549–554, 1997.
10. Johan Jeuring. Incremental algorithms on lists. In Jan van Leeuwen, editor, Proc.

of the SION Conference on Computer Science in the Netherlands, pages 315–335,
1991.

11. Donald E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, June 1968.

12. Conor McBride. The Derivative of a Regular Type is its Type of One-Hole Con-
texts. 2001.

13. Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. Stretching the storage
manager: weak pointers and stable names in Haskell. pages 37–58. 2000.

14. Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan Jeuring.
Generic Programming with Fixed Points for Mutually Recursive Datatypes. In
ICFP 2009, pages 233–244. ACM, 2009.

15. João Saraiva, S. Doaitse Swierstra, and Matthijs Kuiper. Functional Incremental
Attribute Evaluation. pages 279–294. 2000.

16. Tim Sheard and Simon L. Peyton Jones. Template Meta-programming for Haskell.
In Haskell 2002, pages 1–16. ACM, 2002.

17. Wouter Swierstra. Why Attribute Grammars Matter. The Monad.Reader, 4, July
2005.

18. Tarmo Uustalu and Varmo Vene. Comonadic functional attribute evaluation.
Trends in Functional Programming 6, pages 145–162, 2007.

19. Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans, Johan Jeur-
ing, and Bastiaan Heeren. A lightweight approach to datatype-generic rewriting.
In WGP 2008, pages 13–24. ACM, 2008.

20. Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute Grammars
Fly First-Class: How to do Aspect Oriented Programming in Haskell. In ICFP
2009, pages 245–256. ACM, 2009.

	Introduction
	A Motivating Example
	Generalizing to Upwards Incrementalization
	Downwards Incrementalization
	Circular Incrementalization
	Datatype-Generic Incrementalization
	The Incremental Zipper
	Discussion and Related Work
	Form of Incrementalizable Functions
	Attribute Grammars
	Incremental Computing
	Incremental Zipper

	Conclusion
	Acknowledgements

