
Generic Storage in Haskell

Sebastiaan Visser Andres Löh
Department of Information and Computing Sciences

Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

sebastiaan@fvisser.nl andres@cs.uu.nl

Abstract
We present a framework for constructing functional data structures
that can be stored on disk. The data structures reside in a heap saved
in a binary file. Operations read and write only the parts of the
data structure that are actually needed. The framework is based on
expressing datatypes as fixed points of functors and then annotating
the recursive positions with additional information. We explain
how functions, if expressed in terms of standard recursion patterns,
can be easily lifted from a pure setting to an effectful, annotated
scenario. As a running example, we sketch how to implement a
persistent library of finite maps based on binary search trees.

Categories and Subject Descriptors D.2.13 [Reusable Software]:
Reusable libraries

General Terms Languages

Keywords datatype-generic programming, fixed points, annota-
tions

1. Introduction
Algebraic datatypes in Haskell provide a powerful way to structure
data. Recursive datatypes can be used to create functional data
structures. Unfortunately, when data structures grow too large to
fit in application memory or when the data outlives the running
time of a single process there is no convenient way to store data
structures outside application memory.

For most object-oriented programming languages there exist
Object-Relational Mappers [2] that allow for a transparent mapping
between objects and tables within relational databases. Automated
derivation of database queries from the structure of objects can save
time in the development process. Many attempts have been made to
map values of algebraic datatypes in Haskell to relational databases
tables. Due to the mismatch between the column based layout of
relational databases and the structure of functional data structures
only values of specific types can be marshalled.

In this paper we present a new framework for saving functional
data structures in Haskell to a database file on disk. We do not use
relational databases. Instead, we build our own system that relies on
the structure of algebraic datatypes. We expose datatypes as fixed
points of functors, and introduce the concept of effectful annota-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP’10, September 26, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0251-7/10/09. . . $10.00

tions. By writing operations as instances of specific recursion pat-
terns such as catamorphisms and anamorphisms, we then obtain
data structures that can be used in various ways. In particular, they
can be used both in memory and on disk.

We identify the three important properties of our framework:

1. Flexibility: The storage system does not impose a single way
to structure the data. Both general purpose and domain-specific
data structures can be stored on disk.

2. Efficiency: By enabling incremental access to parts of the data
we allow efficient manipulation of large collections of data.
Algorithms working on a persistent data structure have the same
asymptotic running time as their in-memory counterpart. Partial
access is a signification extension to more conventional data
serialization methods [15, 19].

3. Transparency: The final interface to the users uses common
Haskell idioms. Users are not bothered with the implementation
details of the storage system when manipulating persistent data
structures.

This paper deals with the generic mapping from data structures
that are used in memory to the same structures that can be stored
on disk. The system we have implemented only works for single-
threaded access to the data. Although we do not address the prob-
lem of concurrent access in detail, we quickly sketch what is needed
to extend the framework to make multi threaded access possible.

Consider the following two simple Haskell programs that on a
high level illustrate the use of our storage framework:

build :: IO ()
build = run "squares.db"$

do let squares = [(1,1),(3,9),(4,16),(7,49)]
produce (fromListP squares)

find :: IO ()
find = run "squares.db"$ forever $

do num← liftIO (read ‘liftM‘ getLine)
res ← consume (lookupP num)
case res of

Just sqr→ liftIO (print (num,sqr))
Nothing→modify (insertP num (num∗num))

The first program opens a database file called squares.db and
uses it to store a mapping from numbers to their squares. The sec-
ond program – that can run independently from the first – opens up
the same database and starts an interactive loop. In every iteration,
the program expects a number and tries to look up the square of
that number in the database. If a square is found, it will be reported
back to the user; when no square is found, the square is computed
and then added to the database.

The operations that are run against the database file run in their
own monadic context, allowing to sequence multiple actions in one
database action. We offer three basic operations to manipulate the

database file: produce, consume and modify. The three functions are
used to lift operations on persistent functional data structures to
work on the database file. In the example program, we lift fromListP,
lookupP and insertP to manipulate a persistent mapping from keys
to values implemented as a binary search tree, similar to Haskell’s
Data.Map library [22].

In Section 2, we summarize the basic and well-known idea of
expressing datatypes as fixed points of their pattern functors, and
defining functions by instantiating recursion patterns such as cata-
morphisms and anamorphisms. We then show how to add annota-
tions to the recursive positions of datatypes (Section 3) and how
to associate functionality with the creation and removal of anno-
tations. Instances of annotations have been used before, but we
aim to describe (possibly effectful) annotations systematically here.
In Section 4, we discuss how annotations affect recursion patterns
and functions that are defined in terms of these patterns. We show
that, in many cases, we can easily lift algebras written in a pure,
annotation-agnostic style to work on annotated datatypes.

Our main contribution is the use of annotations for a generic
storage framework. For that, we need an on-disk heap structure that
can hold blocks of binary data (Section 5). It allows dynamic allo-
cation and freeing of blocks on disk, and can grow and shrink on
demand. We then use pointers as offsets to blocks on the storage
heap as annotations for the recursive positions of datatypes (Sec-
tion 6), yielding data structures than can be stored on disk. As a
running example, we show how to apply the storage framework to
create a persistent binary tree.

We discuss some subtleties of our approach as well as opportu-
nities for future work in Section 7, present related work in Section 8
and conclude in Section 9.

2. Working with fixed points
In this section, we show how datatypes can be rewritten as fixed
points, and algorithms working on such datatypes can be ex-
pressed in terms of recursion patterns [1, 16, 21, 24]. Reexpressing
datatypes and algorithms in this style grants us fine-grained ac-
cess to the structure of the datatypes, and thereby control over the
behaviour of operations.

2.1 Recursive datatypes
As a running example of a typical recursive datatype, we consider
the datatype of binary search trees:

data Tree k v
= Leaf | Branch k v (Tree k v) (Tree k v)

The type Tree is parameterized over the type of keys k and the type
of values v. The constructor Branch represents an internal node,
containing a key, a value, a left and a right subtree. Leaves do not
contain values and are represented by Leaf. We will maintain the
binary search tree property as an invariant. For simplicity, we will
not try to keep the tree properly balanced at all times.

An example tree, illustrated in Figure 1, can be defined as
follows:

myTree :: Tree Int Int
myTree = Branch 3 9 (Branch 1 1 Leaf Leaf)

(Branch 4 16 (Branch 7 49 Leaf Leaf)
Leaf)

We now present some simple operations on binary search trees.
As many functions that operate on datatypes, these examples follow
the structure of the datatype closely: they are instances of standard
recursion patterns.

First, let us consider the lookup function on binary search trees.
Given a key, the function descends the tree. In each branch, the
argument is compared to the stored key in order to decide what

Branch

Leaf

3, 9

Branch
1, 1

Leaf

Leaf

Branch
7, 49

Leaf

Leaf

Branch
4, 16

Figure 1. An example of a binary tree.

branch to take. If a correct key is found before a leaf is reached, the
associated value is returned.

lookup :: Ord k⇒ k→ Tree k v→Maybe v
lookup Leaf = Nothing
lookup k (Branch n x l r) = case k ‘compare‘ n of

LT → lookup k l
EQ→ Just x
GT→ lookup k r

Next, we define fromList, a function that creates a binary search tree
from a list of key-value pairs. The function first sorts the list on the
keys and then calls a helper function fromSortedList:

fromList :: Ord k⇒ [(k,v)]→ Tree k v
fromList = fromSortedList◦ sortBy (comparing fst)

fromSortedList :: [(k,v)]→ Tree k v
fromSortedList [] = Leaf
fromSortedList xs =

let (l,(k,v) : r) = splitAt (length xs ‘div‘ 2−1) xs
in Branch k v (fromSortedList l) (fromSortedList r)

If the input list is empty, a leaf is produced. Otherwise, we split the
list into two parts of approximately equal length, use the middle
pair for a new branch and call fromSortedList recursively for both the
left and the right subtree.

Finally, we look at insert, a function that inserts a new key-
value pair into a binary tree. Like lookup, the function performs a
key comparison to ensure that the binary search tree property is
preserved by the operation.

insert :: Ord k⇒ k→ v→ Tree k v→ Tree k v
insert k v Leaf = Branch k v Leaf Leaf
insert k v (Branch n x l r) = case k ‘compare‘ n of

LT→ Branch n x (insert k v l) r
→ Branch n x l (insert k v r)

All three functions follow the structure of the Tree datatype closely.
They recurse at exactly the places where the underlying datatype
Tree is recursive. Function lookup destructs a tree, whereas fromList
builds one. The function insert modifies a tree, or destructs one tree
while building another.

2.2 Fixed points
We now show how abstracting from the recursive positions in a
datatype and re-expressing the datatype as a fixed point of a functor
helps us to make the recursion patterns of the operations explicit.
For our running example, this means that we move from Tree to
TreeF by adding a parameter r that is used wherever Tree makes a
recursive call:

data TreeF k v r = Leaf | Branch k v r r

The type TreeF is also called the pattern functor of Tree.

To get our binary search trees back, we have to tie the recursive
knot, i.e., instantiate the parameter r with the recursive call. This job
is performed by the type-level fixed point combinator µ that takes a
functor f of kind ∗→ ∗ and parameterizes f with its own fixed point:

newtype µ f = In {out :: f (µ f)}

By using µ on a pattern functor such as TreeF, we obtain a recursive
datatype once more that is isomorphic to the original Tree datatype:

type Tree k v = µ (TreeF k v)

Building a binary tree structure for our new Tree type requires
wrapping all constructor applications with an additional application
of the In constructor of the µ datatype. It is thus helpful to define
“smart constructors” for this task:

leaf :: Tree k v
leaf = In Leaf

branch :: k→ v→ Tree k v→ Tree k v→ Tree k v
branch k v l r = In (Branch k v l r)

Our example tree can now be expressed in terms of leaf and branch
rather than Leaf and Branch, but otherwise looks as before.

2.3 Recursion patterns
Given a fixed point representation of a datatype, we can define a
number of recursion patterns for the datatype. But first, we have to
back up the fact that the pattern functor really is a functor. To this
end, we make it an instance of the Functor class:1

instance Functor (TreeF k v) where
fmap Leaf = Leaf
fmap f (Branch k v l r) = Branch k v (f l) (f r)

Catamorphism A catamorphism is a recursion pattern that con-
sumes a value of a given data structure systematically. It is a gener-
alization of Haskell’s foldr function to other datatypes:

type Algebra f r = f r→ r

cata :: Functor f⇒ Algebra f r→ µ f→ r
cata φ = φ ◦ fmap (cata φ)◦out

The argument to the catamorphism is often called an algebra.
The algebra describes how to map a functor where the recursive
positions have already been evaluated to a result. The function
cata then repeatedly applies the algebra in a bottom-up fashion to
transform a whole recursive structure.

The function lookup on binary search trees is an example of a
catamorphism. An algebra for lookup is defined as follows:

lookupALG :: Ord k⇒ k→ Algebra (TreeF k v) (Maybe v)
lookupALG k Leaf = Nothing
lookupALG k (Branch n x l r) = case k ‘compare‘ n of

LT → l
EQ→ Just x
GT→ r

Compared to the original definition of lookup, the definition of
lookupALG is not recursive. The benefit for us is that the new form
facilitates changing the behaviour of the function at recursive calls.

We can get the behaviour of the original lookup function back by
running the algebra – we simply pass it to the cata function:

lookup :: Ord k⇒ k→ Tree k v→Maybe v
lookup k = cata (lookupALG k)

Anamorphism An anamorphism is a recursive pattern that is
dual to the catamorphism. Where the catamorphism systematically
decomposes a structure, the anamorphism systematically builds

1 Since version 6.12.1, GHC can derive this instance automatically.

one. It is a generalization of Haskell’s unfoldr function to other
datatypes:

type Coalgebra f s = s→ f s

ana :: Functor f⇒ Coalgebra f s→ s→ µ f
ana ψ = In◦ fmap (ana ψ)◦ψ

The argument to an anamorphism is called a coalgebra. A coal-
gebra takes a seed of type s and produces a functor f s where the
elements contain new seeds. The function ana repeatedly runs the
coalgebra to all the seed values, starting from the original seed, un-
til none remain.

The function fromSortedList is an anamorphism on trees. We can
define a suitable coalgebra as follows:

fromSortedListALG :: Coalgebra (TreeF k v) [(k,v)]
fromSortedListALG [] = Leaf
fromSortedListALG xs =

let (l,(k,v) : r) = splitAt (length xs ‘div‘ 2−1) xs
in Branch k v l r

The definition is very similar to the original one, but again, we have
no recursive calls, as those are handled by ana now:

fromList :: Ord k⇒ [(k,v)]→ Tree k v
fromList = ana fromSortedListALG ◦ sortBy (comparing fst)

Apomorphism Let us recall the function insert. When we are in a
branch of the tree, we compare the stored key with the given key.
Depending on the outcome, we continue inserting into one subtree,
but want to keep the other subtree unchanged. While it is possible
to coerce insert into both the catamorphism and the anamorphism
pattern, neither pattern is a very good fit.

Instead, we use an apomorphism [30] – a generalization of an
anamorphism, and the dual concept of a paramorphism [20].

type ApoCoalgebra f s = s→ f (Either s (µ f))

apo :: Functor f⇒ ApoCoalgebra f s→ s→ µ f
apo ψ = In◦ fmap apo′ ◦ψ

where apo′ (Left l) = apo ψ l
apo′ (Right r) = r

Where the coalgebra for anamorphisms generates a functor with
new seeds from a single seed, we can now decide at every recursive
position whether we want to produce a new seed (Left), or whether
we simply want to provide a recursive structure to use at this point
(Right).

It is now easy to define a coalgebra for insert:

insertALG :: Ord k⇒ k→ v→
ApoCoalgebra (TreeF k v) (Tree k v)

insertALG k v (In Leaf) =
Branch k v (Right (In Leaf)) (Right (In Leaf))

insertALG k v (In (Branch n x l r)) =
case compare k n of

LT→ Branch n x (Left l) (Right r)
→ Branch n x (Right l) (Left r)

insert :: Ord k⇒ k→ v→ Tree k v→ Tree k v
insert k v = apo (insertALG k v)

We have now introduced three useful patterns that allow us to define
functions on a fixed point representation of a datatype in such a way
that we abstract from the recursive structure. In the next section, we
will make use of the abstraction by adding new functionality in the
form of annotations to the recursive positions.

3. Annotations
By moving from a recursive datatype to its pattern functor, we now
have control over what exactly to do with recursive positions. We
can simply tie the knot using the fixed point combinator µ, as we

have seen above. However, we can also store additional information
at each recursive position. In this section, we discuss how we can
move from fixed poins to annotated fixed points. We discuss how to
create and remove annotations systematically, and discuss example
annotations.

3.1 Annotated fixed points
The annotated fixed point combinator µα is defined as follows:

type µα α f = µ (α f)

Instead of taking the fixed point of f, we take the fixed point of α f,
where α is a type constructor (of kind (∗ → ∗)→ ∗ → ∗) that can
be used to modify the functor, for example by adding additional
information.

The simplest annotation is the identity annotation:

newtype Id f a = Id {unId :: f a}

Using µα Id is isomorphic to using µ.
We can define an annotated variant of binary search trees by

applying µα in place of µ:

type Treeα α k v = µα α (TreeF k v)

Once again, Treeα Id is isomorphic to our old Tree type.

3.2 Creating and removing annotations
Our main goal in this article is to use annotations to represent
pointers to data that is stored on disk. Reading and writing to
disk are effectful operations. Therefore, we allow the creation and
removal of annotations to be associated with a monadic context.

We now define type classes In and Out that generalize the In
and out operations on fixed points to the annotated scenario. The
method inα wraps a functor with fully annotated substructures and
adds a new annotation. The outα method unwraps an annotated
node, exposing the functor with the annotated substructures. The
results of both operations live in a monad m:

class Monad m⇒ In α f m where
inα :: f (µα α f)→m (µα α f)

class Monad m⇒ Out α f m where
outα :: µα α f→m (f (µα α f))

The functor f is added as a class parameter, so that we can impose
additional restrictions on it at a later stage.

For the identity annotation, we choose m to be the identity
monad (called Identity), and inα and outα are in essence just In and
out:

instance In Id f Identity where
inα = return◦ In◦ Id

instance Out Id f Identity where
outα = return◦unId◦out

Using the In type class, we define two new smart constructors for
the annotated binary search tree datatype:

leafα :: In α (TreeF k v) m⇒m (Treeα α k v)
leafα = inα Leaf

branchα :: In α (TreeF k v) m⇒
k→ v→ Treeα α k v→ Treeα α k v→
m (Treeα α k v)

branchα k v l r = inα (Branch k v l r)

The leafα and branchα smart constructors can be used to build up
annotated binary search trees for an arbitrary annotation type α.
However, since the annotation type is associated with a monadic
context, we now have to build our example tree in monadic style:

myTreeα :: In α (TreeF Int Int) m⇒m (Treeα α Int Int)
myTreeα =

do l ← leafα

d← branchα 7 49 l l
e← branchα 1 1 l l
f ← branchα 4 16 d l
branchα 3 9 e f

Note the type of myTreeα : the value is overloaded on the annota-
tion α, so we can use it with different annotations later.

3.3 Example annotation: modification time
As a non-trivial example of an annotation, let us keep track of the
modification time of substructures. For this purpose, we define a
new datatype ModTime that can be used as an annotation: next to the
actual structure, it also saves a LocalTime.2

data ModTime f a = M { time :: LocalTime,unM :: f a}

In order to use the annotation, we have to define instances
of both the In and Out classes, and thereby specify the behaviour
associated with creating and removing the annotation. In our case,
we want to store the current time when creating the annotation, but
do nothing further when dropping it:

instance In ModTime f IO where
inα f = do t← getCurrentTime

return (In (M t f))

instance Out ModTime f IO where
outα = return◦unM◦out

Because getting the current time requires a side effect, the ModTime
annotation is associated with the IO monad.

We can now use the annotation, for example with our binary
search tree type, which we specialize to use the ModTime annotation:

type TreeM k v = Treeα ModTime k v

As a simple use case, we can evaluate the overloaded example
tree myTreeα using the modification time annotation simply by
specializing its type accordingly. The construction of the tree has
to take place in the IO monad:

ghci> myTree_M <- myTree_a :: IO (TreeM Int Int)
{M 236807 (Branch 3 9
{M 236755 (Branch 1 1
{M 236688 Leaf}
{M 236688 Leaf})}

{M 236781 (Branch 4 16
{M 236728 (Branch 7 49
{M 236688 Leaf}
{M 236688 Leaf})}

{M 236688 Leaf})})}

For readability, we have cropped the modification times to the
microseconds, reformatted the output slightly to resemble the tree
structure, and used a custom Show instance for µ that uses curly
braces for the In constructor. The tree is shown schematically in
Figure 2. We bind the result of the computation to myTree_D for
later reuse.

The last modification times of all the leaves are the same, be-
cause we share the result of one call to leafα in the definition of
myTreeα . We see that the modification times follow the order of the
monadic operations in myTreeα : the leaves are created first, the root
of the tree is created last.

3.4 Example annotation: debug trace
As another example of an annotation we introduce Debug:

newtype Debug f a = D {unD :: f a}

This annotation does not store any data except for the functor itself.
We are only interested in the effects associated with creation and

2 The LocalTime type is from the Haskell time package.

branch

leaf

3, 9

M
In

branch
1, 1

M
In

M

leaf

M

leaf

branch
7, 49

M

M

leaf

M

leaf

branch
4, 16

M
In

M
In

In In

In In In

Figure 2. Binary tree with local modification times saved as anno-
tations at the recursive positions.

removal of the annotation: we want to create a debug trace of these
operations when they occur.

The desired behaviour is implemented in the In and Out instances
for the debug annotation:

instance (Functor f,Show (f ()))⇒ In Debug f IO where
inα = return◦ In◦D / printer "in"

instance (Functor f,Show (f ()))⇒ Out Debug f IO where
outα = printer "out"◦unD◦out

Here,

(/) :: Monad m⇒ (b→m c)→ (a→m b)→ a→m c
(f / g) x = g x>>= f

is right-to-left Kleisli composition.3 It has lower precedence than
normal function composition. The function printer prints the top
layer of a given recursive structure f and also returns f:

printer :: (Functor f,Show (f ()))⇒ String→ f a→ IO (f a)
printer s f = print (s, fmap (const ()) f)>> return f

To use the debug annotation, we first specialize our binary tree
type:

type TreeD k v = Treeα Debug k v

Then, we evaluate myTreeα once more, this time using TreeD as a
result type. This causes a trace of all the contruction steps to be
printed:

ghci> myTree_D <- myTree_a :: IO (TreeD Int Int)
("in",Leaf)
("in",Branch 7 49 () ())
("in",Branch 1 1 () ())
("in",Branch 4 16 () ())
("in",Branch 3 9 () ())
{D (Branch 3 9 {D (Branch 1 1 {D Leaf}
{D Leaf})} {D (Branch 4 16 {D (Branch 7
49 {D Leaf} {D Leaf})} {D Leaf})})}

3.5 Summary
In this section, we have introduced annotated fixed points. We
have discussed how to abstract from the creation and removal of
annotations by means of the In and Out type classes. We have also

3 Available as <=< in Haskell.

introduced two example annotations, both with effects in the IO
monad: one to keep track of the modification time of substructures,
and one to generate a debug trace of operations on the structure. In
Section 6, we will introduce an annotation that allows us to make
data structures persistent.

Before that, we have a closer look at how to work with annotated
structures. Until now, we have seen that values defined in a monadic
style such as myTreeα can be evaluated at different annotation types,
leading to different behaviour. In the next section, we show how
the recursion patterns we introduced in Section 2.3 can be lifted
to the annotated scenario, meaning that we can also lift functions
specified via algebras to work on annotated structures easily.

4. Annotated recursion patterns
It is inconvenient to write operations on annotated datatype directly.
Since both inα and outα are monadic, we are forced to use monadic
style everywhere. Furthermore, code that is supposed to be generic
in the annotation type cannot use pattern matching, because nothing
is known about the shape of the annotation.

In this section, we show that by using recursion patterns, we
can avoid the above problems. We demonstrate that catamorphisms,
anamorphisms and apomorphisms can all be easily adapted to work
with annotated structures. As we will see, in many cases we can
reuse the original algebras, written in a pure, annotation-agnostic
way. By plugging these algebras into the new patterns, they can run
in a setting where effectful operations are performed behind the
scenes.

4.1 Catamorphism
Recall the definition of a catamorphism from Section 2.3:

type Algebra f r = f r→ r

cata :: Functor f⇒ Algebra f r→ µ f→ r
cata φ = φ ◦ fmap (cata φ)◦out

In order to make the function annotation-ready, we replace out by
outα ; as a consequence, everything becomes monadic [7], so we
replace function composition by Kleisli composition; finally, we
replace fmap by mapM:

cataα :: (Out α f m,Monad m,Traversable f)⇒
Algebra f r→ µα α f→m r

cataα φ = return◦φ / mapM (cataα φ) / outα

Haskell’s Traversable type class replaces the Functor constraint –
it contains the mapM method. Note that we use the same Algebra
type as before, and assume pure algebras that are defined in an
annotation-agnostic way – exactly as we want.

Before we can use cataα on an actual datatype such as binary
search trees, we have to give a Traversable instance for the pattern
functor:4

instance Traversable (TreeF k v) where
mapM Leaf = return Leaf
mapM f (Branch k v l r) = liftM2 (Branch k v) (f l) (f r)

As before, we obtain an actual lookup function by passing the
algebra to cataα :

lookup k = cataα (lookupALG k)

We can use lookup once we have an annotated tree. We reuse
myTree_M that is bound to the result of evaluating myTreeα using
the modification time annotation. The following expression returns
the expected result, but now in the IO monad:

4 Haskell’s Traversable has Foldable as superclass, so we have to define that
instance as well, but since its functionality is not used here, we omit it. GHC
6.12.1 and later can derive both Foldable and Traversable automatically.

ghci> lookup 4 myTree_M
Just 16

However, if we use myTree_D that is bound to the result of
evaluating myTreeα in the debug annotation, the call to lookup reveals
a problem:

ghci> lookup 4 myTree_D
("out",Branch 3 9 () ())
("out",Branch 1 1 () ())
("out",Leaf)
("out",Leaf)
("out",Branch 4 16 () ())
("out",Branch 7 49 () ())
("out",Leaf)
("out",Leaf)
("out",Leaf)
Just 16

The function produces a result and a trace as expected. However,
the trace reveals that the entire tree is traversed, not just the path
to the Branch containing the key 4. The culprit is the strictness
of IO, that propagates to the whole operation now that IO is used
behind the scenes. We defer the discussion of this problem until
Section 7.1.

We can use the annotated catamorphism also to remove all an-
notations from a recursive structure, removing all layers of annota-
tions and performing the associated effects:

fullyOutα :: (Out α f m,Monad m,Traversable f)⇒
µα α f→m (µ f)

fullyOutα = cataα In

4.2 Anamorphism
For anamorphisms, the situation is very similar as for catamor-
phisms. We define an annotated variant of ana, called anaα , by lift-
ing everything systematically to the annotated monadic setting:

type Coalgebra f s = s→ f s

anaα :: (In α f m,Monad m,Traversable f)⇒
Coalgebra f s→ s→m (µα α f)

anaα ψ = inα / mapM (anaα ψ) / return◦ψ

Note that the Coalgebra type synonym is unchanged and just re-
peated here for convenience.

We can now produce annotated values easily. Instead of using a
monadic construction such as in the definition of myTreeα , we can
resort to fromList:

fromList xs = anaα fromSortedListALG
(sortBy (comparing fst) xs)

The definition

myTreeα
′ :: In α (TreeF Int Int) m⇒m (Treeα α Int Int)

myTreeα
′ = fromList [(1,1),(3,9),(4,16),(7,49)]

is equivalent to the old myTreeα , but significantly more concise.
The counterpart to fullyOutα that completely removes all annota-

tions from a structure is fullyInα that completely annotates a recur-
sive structure:

fullyInα :: (In a f m,Monad m,Traversable f)⇒
µ f→m (µα a f)

fullyInα = anaα out

4.3 Apomorphism
For the apomorphism, we have slightly more work to do, because
the fixed point combinator occurs in the type of coalgebras:

type ApoCoalgebra f s = s→ f (Either s (µ f))

As a first step, we are changing the coalgebra type to use µα instead:

type ApoCoalgebraα α f s = s→ f (Either s (µα α f))

We can now define apoα :
apoα :: (In α f m,Monad m,Traversable f)⇒

ApoCoalgebraα α f s→ s→m (µα α f)
apoα ψ = inα / mapM apoα

′ / return◦ψ

where apoα
′ (Left l) = apoα ψ l

apoα
′ (Right r) = return r

Unfortunately, we cannot directly use apoα to lift insert to work on
annotated binary search trees. The reason is that a modification
function such as insert both destructs and constructs a tree. If we
want to use an annotated binary search tree as seed for the apomor-
phism, we have to destruct it in the coalgebra in order to pattern
match – but we cannot, because destructing is associated with ef-
fects. Furthermore, we create new leaves when inserting key-value
pairs – but again, we cannot, because constructing new annotated
values is associated with effects.

We therefore define a new recursion pattern for modifiers such
as insert in Section 4.5. As a preparation for the new pattern, we
first look at partially annotated structures.

4.4 Partially annotated structures
Let us capture the idea of building some layers of a recursive
structure in a pure, annotation-agnostic way, while still being able
to reuse parts of an annotated structure that we have available
already.

To this end, we introduce an annotation transformer called
Partial. Given an annotation α, we can either choose to create a new
unannotated layer, or (re)use a complete annotated subtree:

data Partial α f a = New (f a)
| Old (µα α f)

We define an abbreviation for partially annotated structures:
type µα̂ α f = µα (Partial α) f

Using the function topIn, we can complete the missing annotations
at the top of a partially annotated structure:

topIn :: (In α f m,Monad m,Traversable f)⇒
µα̂ α f→m (µα α f)

topIn = topIn′ ◦out
where topIn′ (New x) = (inα / mapM topIn) x

topIn′ (Old x) = return x

4.5 Modification functions
By employing the partially annotated structures, we can now intro-
duce a variant of the apomorphism that modifies a given structure.

As a preparation, we define a type class OutIn that combines the
functionality of the Out and In classes: using the class method outInα ,
an annotated node is unwrapped, modified, and finally re-wrapped:

class (Out α f m, In α f m)⇒ OutIn α f m where
outInα :: (f (µα α f)→m (f (µα α f)))

→ (µα α f)→m (µα α f)
outInα f = inα / f / outα

We require both Out and In as superclasses of OutIn. Given the outα
and inα methods, we supply a default implementation for outInα .
For all the annotations we have been using so far, the default
implementation is sufficient:

instance OutIn Id f Identity
instance OutIn ModTime f IO
instance (Functor f,Show (f ()))⇒ OutIn Debug f IO

For some annotation types (such as the Heap annotation we use in
Section 6), we can give an improved direct definition.

We can now define a variant of the apomorphisms for modifica-
tion functions that is different from the normal apomorphism in the
following ways:

• the type of the seed is restricted to be a value of the re-
cursive structure itself – this also motivates the name endo-
apomorphism for the new pattern;

• instead of ending the recursion by returning a fully annotated
tree, we allow to stop with a partially annotated tree.

We give both the old and the new coalgebra type for comparison:
type ApoCoalgebraα α f s =

s → f (Either s (µα α f))

type EndoApoCoalgebraα α f =
f (µα α f)→ f (Either (µα α f) (µα̂ α f))

The associated recursion pattern looks as follows:
endoApoα :: (OutIn α f m,Monad m,Traversable f)⇒

EndoApoCoalgebraα α f→ µα α f→m (µα α f)
endoApoα ψ = outInα $ mapM endoApoα

′ ◦ψ

where endoApoα
′ (Left l) = endoApoα ψ l

endoApoα
′ (Right r) = topIn r

Compared to the regular apomorphism, we use outInα because we
now work with the same source and target structure, and we use
topIn to create the missing annotations once we stop the recursion.

When defining a coalgebra for use with endoApoα , we now
effectively have the choice between the following three actions per
recursive position:

• We can produce a new seed to drive the next recursive step, by
selecting the left part of the sum type in the result of the coal-
gebra. We define a helper function with the more meaningful
name next for this choice:

next :: µα α f→ Either (µα α f) (µα̂ α f)
next = Left

• We can reuse a fully annotated part of the input as output, stop-
ping the recursion at this point. We define the helper function
stop for this purpose:

stop :: µα α f→ Either (µα α f) (µα̂ α f)
stop = Right◦ In◦Old

• Finally, we can create one or more layers of new nodes, by using
the helper function make, which takes a partially annotated
structure as its argument:

make :: f (µα̂ α f)→ Either (µα α f) (µα̂ α f)
make = Right◦ In◦New

Let us now return to our example, the insert function on binary
search trees. Unfortunately, we cannot quite reuse the original
coalgebra we have given in Section 2.3. We have to be more explicit
about where we reuse old parts the tree, and where we create new
parts of the tree:

insertALG :: Ord k⇒
k→ v→ EndoApoCoalgebraα α (TreeF k v)

insertALG k v Leaf =
Branch k v (make Leaf) (make Leaf)

insertALG k v (Branch n x l r) =
case k ‘compare‘ n of

LT→ Branch n x (next l) (stop r)
→ Branch n x (stop l) (next r)

The differences are relatively minor: We can still define insertALG

as a pure function, and annotation-agnostic. We no longer have
to pattern match on parts of the recursive structure, because we
use the endo-apomorphism now. And we can still get the original
behaviour back, by specializing to the identity annotation and the
identity monad.

We run insertALG by passing it to endoApoα :
insert k v = endoApoα (insertALG k v)

FU
LL

00 20 28

14 4
heap on disk

in-memory allocation map

FR
E

E

20 4

28 12

46 55

FR
E

E 12
FU

LL 3

Figure 3. A snippet of a heap structure containing four blocks of
which two block are in use and contain a payload. The blocks are
placed next to each other. An in-memory allocation map is used to
map payload sizes to free blocks of data.

4.6 Summary
In this and the previous section we have shown a framework for
generically annotating recursive datatypes. Using an annotated
fixed point combinator we are able to store custom markers (con-
taining potentially custom information) at the recursive positions
of functional data structures. We associate extra functionality – po-
tentially with effects – with the creation, removal and modification
of annotated recursive structures.

By defining algebras for specific recursion patterns, we can
define functions in a pure style, without having to worry about
annotations or monadic contexts. We have shown a number of
frequently occurring patterns, for consumers, for producers, and for
modifiers. More patterns can be defined in a similar style if desired.
For example, we can define an endo-paramorphism that is dual to
the endo-apomorphism.

We have shown that several operations on binary search trees
can be expressed using such patterns. In fact, we have built a library
that replicates most of a finite map data structure based on binary
search trees in our annotated framework, yielding a data structure
that can be flexibly used with several annotations.

5. File-based storage heap
In the previous sections, we showed how to perform generic pro-
gramming with fixed point annotations. The annotations form the
basis of our storage framework. We use the annotations to marshal
individual nodes from and to a database file on disk. Before we can
explain this storage annotation in more detail, we first sketch the
low-level storage layer.

In this section, we introduce a block-based heap data structure
that is used to allocate and use fragments of binary data on disk. The
structure of the heap is similar to that of in-memory heaps as used
by most programming languages to manage dynamically allocated
data. The heap structure can freely grow and shrink on demand.

The heap uses a file to store a contiguous list of blocks of binary
data. Each of the blocks contains a header and a payload. The
header contains a flag to tell if the block is currently free or in
use. Furthermore, the header indicates the size of the block. The
payload is an arbitrary sequence of binary data. The size of the
payload must not exceed the size specified in the header minus the
header size. An example layout of the heap is shown in Figure 3.

The heap described here has a rather imperative and low-level
implementation. Some of the operations are unsafe: they have in-
variants that are not enforced at compile time. We emphasize that
these unsafe operations are internal to our framework. The user de-
fines operations in terms of a safe and more high-level interface as
discussed in the next section.

5.1 Offset pointers
Applications that use the heap can allocate blocks of data of any
size and use it for writing and reading data. All access to the heap is
managed using pointers. The pointer datatype just stores an integer
that represents an offset into the heap file. An invariant is that
pointers always point to the beginning of a block.

type Offset = Integer

newtype Ptr (f ::∗→ ∗) a = P Offset
deriving Binary

The Ptr has two phantom type arguments f and a that are used to
ensure that only values of type f a can be written to or read from
the location addressed by the pointer. By using two type arguments
rather than one, we ensure that Ptr has the right kind to be used as a
fixed-point annotation.

5.2 Heap context
All heap operations run inside a monadic Heap context. The Heap
monad is a monad transformer stack that uses the IO monad on the
inside:

newtype Heap a = Heap (ReaderT Handle (StateT AllocMap IO) a)

The context uses a reader monad to distribute the file handle of the
heap file to all operations, and it makes use of a state monad to
manage an allocation map.

The allocation map stores a mapping of block sizes to the offsets
of all blocks that are not currently in use. Because we manage an in-
memory map, no disk access is needed when allocating new blocks
of data.

From the point of view of the user the Heap is opaque, no access
to the internals of the monad are required to work with the heap. In
order to run a sequence of heap operations we use the run function,
which receives the name of a heap file:

run :: FilePath→ Heap a→ IO a

Because of the file access, the result of run is in the IO monad. The
run function opens the heap file and initializes it if it is new. If the
file exists, it quickly scans all blocks to compute the in-memory
allocation map. It then applies the heap computations, and closes
the heap file in the end.

5.3 Heap operations
We now present the interface of the heap structure. For each oper-
ation, we provide the type signature and a short operations, but we
do not go into details about the implementation.

• allocate :: Integer→ Heap (Ptr f a)

The allocate operation can be used to allocate a new block of
data that is large enough to hold a payload of the given size.
The function can be compared to the in-memory malloc function
from the C language. On return, allocate yields a pointer to a
suitable block on disk. The function marks the current block as
occupied in the in-memory allocation map. Subsequent calls to
allocate will no longer see the block as eligible for allocation.

• free :: Ptr f a→ Heap ()

When a block is no longer needed, it can be freed using the free
operation. The internal allocation map will be updated so the
block can be reused in later allocations.

• write :: Binary (f a)⇒ f a→ Heap (Ptr f a)

The write operation takes a Haskell value, serializes it to a binary
stream, allocates just the right amount of data on the heap and
then stores the value in the block on disk.
To produce a binary serialization of a Haskell value, the Binary
type class is used [19]. The interface of the class is as follows:

class Binary t where
put :: t→ Put
get :: Get t

The put method serializes a value to a binary stream, whereas
get deserializes a binary stream back to a Haskell value.5

• read :: Binary (f a)⇒ Ptr f a→ Heap (f a)

Dual to the write operation, we have the read operation. The
function takes a pointer to a block on disk, reads the binary
payload, deserializes the payload to a Haskell value using the
Binary type class and returns the value.

• fetch :: Binary (f a)⇒ Ptr f a→ Heap (f a)

The fetch operation is a variant of the read operation. Whereas
read leaves the original block intact, fetch frees the block after
reading the data.

• writeRoot :: Ptr f a→ Heap ()

The writeRoot operation is a variant of write that will show to be
useful in the next section. The function takes a pointer to some
block on the heap and will store the pointer value on a fixed
location on the heap. This function can be used to store the root
of a data structure in a place that can easily be identified, also
beyond the end of a database session.

• readRoot :: Heap (Ptr f a)

The readRoot operation can be used to read back the pointer that
has been stored by the writeRoot operation.

The allocate and free heap operations are both used in the imple-
mentation of write, read, fetch, but are not used further in this frame-
work. In the next section we see how the five higher-level functions
write, read, fetch, writeRoot and readRoot can be used in combination
with the annotation framework to build persistent data structures.

5.4 Summary
In this section, we have sketched the interface of a file-based heap
structure. It can be used to store arbitrary blocks of binary data on
disk. Access to the data is managed by pointers as offsets into the
file. All Haskell values that have an instance for the Binary type
class can automatically be marshalled from and to the heap. The
heap structure is low-level and does not assume anything about the
contents of the individual blocks.

6. Persistent data structures
Everything is in place now to define an annotation that allows us to
make data structures persistent. In the previous section, we have
chosen to define the Ptr datatype with two type parameters – a
functor of kind ∗ → ∗ and an explicit index of kind ∗. This design
decision makes Ptr usable as a fixed point annotation. Creating a Ptr
corresponds to writing to the heap, whereas removing a Ptr implies
reading from the heap.

We can then build concrete persistent data structures such as
binary search trees, by using the pointer annotation:

type TreeP k v = µα Ptr (TreeF k v)

When we work with a value of type TreeP k v, we now actually work
with a pointer to a binary tree that lives somewhere on the heap
that is stored on the disk. To be precise, the pointer references a
heap block that stores a binary serialization of a single node of
type TreeF k v (TreeP k v). The recursive positions of the node contain

5 Both Get and Put are monads defined in the Binary class. The details
are not relevant for our purposes here. Using the regular [28] library for
generic programming, we have created a generic function that can be used to
automatically derive Binary instances for Haskell datatypes that are regular.

branch
3, 9

branch
4, 16

branch
1, 1

branch
7, 49

leaf leaf leaf leaf leaf

p p p p p p p p

16 14 15

17 20 2119 18

13 14 15 16 17 18 19 20 21

In In In In In In In In In

p

Figure 4. A persistent binary tree that lives on the storage heap. Each node is stored on its own heap block in binary representation. All
substructures are referenced by pointer to the file offset.

again pointers to substructures. Figure 4 shows how such a tree
looks like.

6.1 Persistent producers and consumers
To make the pointer type Ptr usable as an annotation, we have to
define instances of the Out and In type classes from Section 3. We
associate the pointer annotation with the Heap context, use the read
operation as the implementation for outα and use the write operation
as the implementation for inα :

instance (Traversable f,Binary (f (µα Ptr f)))⇒
Out Ptr f Heap

where outα = read / return◦out

instance (Traversable f,Binary (f (µα Ptr f)))⇒
In Ptr f Heap

where inα = return◦ In / write

To make the two instances work, we need a Binary instance for both
the fixed point combinator and the TreeF pattern functor:

instance Binary (f (µ f))⇒ Binary (µ f) where
put (In f) = put f
get = fmap In get

instance (Binary k,Binary v,Binary f)⇒
Binary (TreeF k v f) where

put Leaf = do putWord8 0
put (Branch k v l r) = do putWord8 1

put k;put v;put l;put r
get = do t← get

if t≡ (0 :: Word8)
then return Leaf
else liftM4 Branch get get get get

We can now specialize the fromList function from Section 4.3
to use the pointer annotation in the Heap context. This yields an
operation that builds a binary search tree on disk instead of in
application memory:

fromListP :: [(Int, Int)]→ Heap (TreeP Int Int)
fromListP = fromList

Note that all we have to do is to specialize the type of the original
operation. We can reuse exactly the same fromList function.

The result of running the fromList operation against a heap file
is a pointer to the root node of the tree as stored on disk, wrapped
inside an In constructor. Performing the operation is as simple as
supplying it to the run function from our heap interface:

ghci> let squares = [(1,1),(3,9),(4,16),(7,49)]
ghci> run "squares.db" (fromListP squares)

Figure 4 shows an illustration of our example tree laid out on the
heap. The example above writes a binary tree of integers to disk as
expected, but has a slight problem when used on its own: the root
pointer of the structure is discarded and lost. We therefore define
a helper function produce that takes a producer operation, such as
fromListP, runs the operation on the heap and then saves the final
pointer in a reserved location on the heap:

produce :: Binary (f (µ f))⇒ Heap (µ f)→ Heap ()
produce c = c>>=writeRoot◦out

We write the pointer to the root node of the produced data structure
to a special location on disk, we call this location the root block.
Becaues we use writeRoot to store the root pointer we can easily read
back the pointer using readRoot to perform consecutive operations
on the same data structure. We delete the squares.db file and run
the example again, this time saving the root node:

ghci> run "squares.db" (produce (fromListP squares))

We make a similar wrapper function for performing consumer
functions. The consume operation takes a heap operation and passes
it as input the data structure pointed to by the pointer stored in the
root block:

consume :: Binary (f (µ f))⇒ (µ f→ Heap b)→ Heap b
consume c = readRoot>>= c◦ In

We can now run any consumer operation on the binary tree of
squares stored on disk. We specialize the lookup function and apply
it to our squares database:

lookupP :: Int→ TreeP Int Int→ Heap (Maybe Int)
lookupP = lookup

ghci> run "squares.db" (consume (lookupP 3))
Just 9

The database file is opened and the root pointer is read from the
root block. The root pointer references a persistent binary tree that
is passed to the lookupP function that, node by node, traverses the
tree until the key is found and the value can be returned.

6.2 Persistent modification
We have described how producers such as fromList and consumers
such as lookup can easily be lifted to a persistent setting if defined
in our generic annotation framework. We now show the same for
modifiers.

To start, we have to give an instance for the OutIn type class for
the pointer annotation in the Heap context:

instance (Traversable f,Binary (f (µα Ptr f)))⇒
OutIn Ptr f Heap

where outInα f = return◦ In / write / f / fetch / return◦out

Note that we do not use the default implementation for outInα ,
which in this case would use read instead of fetch. As explained
in Section 5.3, fetch immediately frees a block after reading it. By
using fetch instead of read, we get the effect that all modifications
to the persistent data structure are mutable operations. After a
modification finishes the old structure is no longer available.

With the OutIn instance we can now also specialize modification
functions such as insert to work on the persistent storage:

insertP :: Int→ Int→ TreeP Int Int→ Heap (TreeP Int Int)
insertP = insert

Similar to produce and consume, we define a function modify that
applies a given modifier to the tree pointed at by the pointer in the
root block, and stores the resulting tree pointer in the root block
once more:

modify :: Binary (f (µ f))⇒ (µ f→ Heap (µ f))→ Heap ()
modify c = readRoot>>= c◦ In>>=writeRoot◦out

Here is an example:

ghci> run "squares.db" (consume (lookupP 9))
Nothing
ghci> run "squares.db" (modify (insertP 9 81))
ghci> run "squares.db" (consume (lookupP 9))
Just 81

This is an interesting example because it shows three consecu-
tive runs on the same database file. The second run modifies the bi-
nary tree on disk and stores the new root pointer in the root block. A
lookup in the third command shows us the database file is updated.

6.3 Summary
This section we have combined the annotated recursion patterns
and the basic heap operations to derive persistent data structures.
By annotating the recursive datatypes with a pointer annotation we
are able to store individual non-recursive nodes on their own block
on the heap. The Out and In instances for the pointer type class read
nodes from and write nodes to the blocks on disk.

The operations on persistent data structures are applied to the
file based storage heap in the same way they are normally applied
to the in-memory heap. By writing data structures as pattern func-
tors and by abstracting from the recursion we can annotate the be-
haviour generically. There is no need to reflect over memory layout
of the compiler runtime.

7. Discussion and future work
In this section, we discuss some subtleties of our approach. We also
point out current shortcomings and topics for future work.

7.1 Laziness
The framework for working with annotated recursive datatypes
uses type classes to associate functionality with creating and re-
moving annotations at the recursive positions. These type classes
have an associated context that allows annotating and un-annotating
structures to have monadic effects. If the context is a strict context,
the operations working on the recursive data structure become strict
too. This strictness can have a severe and unexpected impact on the
running time of the algorithms.

As an example, recall the lookup function on binary search trees
as discussed in Section 4.1. Used with the identity annotation, the
operation performs an in-memory lookup, traversing one path in
the tree from the root to a leaf. If the tree is properly balanced, this
corresponds to a runtime of O(logn) where n is the size of the tree.
However, if used with the pointer annotation from Section 6, the
lookup function runs inside the Heap monad which is strict, because
the underlying IO monad is strict. The strict bind operator for the
Heap monad makes the lookupP operation traverse the entire tree,
i.e., to run in Θ(n). The same happens if we use the modification
time or debug annotation.

Two possible solutions for this problem come to mind:

• We can let algebras be monadic. The recursion patterns then
pass computations rather than precomputed results to the alge-
bras. It becomes the responsibility of the algebra implementor
to explicitly evaluate the inputs that are needed.

• We can try to ensure that the operations run in a lazy monadic
context. When the context is lazy, the entire operations becomes
lazy while the algebras remain pure.

We have adopted the second option: We build our recursion patterns
on top of lazy monads. We make a type class that can be used to lift
monadic computations to lazy computations:

class Lazy m where
lazy :: m a→m a

We make an instance for the IO monad by using unsafeInterleaveIO.
This function delays IO operations until they are actually required,
possibly discarding them if their results are never used:

instance Lazy IO where
lazy = unsafeInterleaveIO

For monads that are already lazy, we can instantiate lazy to be the
identity function.

A new catamorphism can be built that uses invokes the lazy
method just before going into recursion:

lazyCataα φ = return◦φ / mapM (lazy◦ lazyCataα φ) / outα

The lazy catamorphism ensures that the monadic actions will only
be performed when the algebra requires the results. The type con-
text tells us this catamorphism is only applicable to monads that
can be run lazily. We derive a new lookup function using lazyCataα :

lookup k = lazyCataα (lookupALG k)

When we perform a lookup on the output of myTreeα – specialized
to the debug annotation – we see a clear reduction in the number of
steps needed to compute the answer:

ghci> lookup 4 it
("out",Branch 3 9 () ())
("out",Branch 4 16 () ())
Just 16

We have solved the laziness problem for the storage heap specif-
ically by creating two separate heap contexts, a read-only context
which uses lazy IO and a read-write context that uses strict IO. The
pointer instance for the Out type class is now associated with the
read-only context, the instance for the In type class is associated
with the read-write context.

To avoid any problems regarding lazy IO, we strictly force the
entire result values of consumer operations to ensure all side-effects
stay within the Heap context and cannot escape. Our operations are
now lazy on the inside but appear strict on the outside.

7.2 Other data structures
We have shown how to build a generic storage framework for
recursive data structures. As running example, we used binary
search trees, but the same technique can easily be applied to any
regular datatype, i.e., all types that can be expressed as a fixed point
of a functor in terms of µα .

Non-regular datatypes such as families of mutually recursive
datatypes, nested datatypes [3] and indexed datatypes or general-
ized algebraic datatypes (GADTs) [17] cannot be expressed di-
rectly. However, it is known that many non-regular datatypes can
be expressed in terms of a higher-order fixed point combinator [9,
17, 23] such as

newtype µh f ix = Inh (f (µh f) ix)

We have extended our annotation framework to such a setting. Each
of the constructions described in the paper can be lifted to the more
complex scenario, but no code reuse is directly possible due to the
more complicated kinds in the higher-order situation.

A more in depth report about persistent indexed datatypes
is provided by Visser [31]. He shows how to represent finger
trees [12], a nested data structure supporting efficient lookup and
concatenation, as an indexed GADT and use the higher-order stor-
age framework to derive a persistent finger tree. All the structural
invariants we expect the finger tree to have are encoded using the
datatype indices.

7.3 Sharing
The storage framework as described works for finite data structures.
Finite data structures that use sharing can be stored on disk using
our framework, but because sharing in Haskell is not observable,
shared substructures will be duplicated in the heap. Storing shared
values more than once can be a serious space leak for datatypes that
heavily rely on sharing.

Solutions have been proposed to make sharing in Haskell ob-
servable [5, 10]. These solutions are often not very elegant, because
they require some form of reflection on the internal machinery of
the compiler runtime.

It would be a useful extension to our framework to allow design-
ers of functional data structures to explicitly mark points at which
sharing is possible. Sharing markers can limit the amount of data
used to store data structures on disk and can even allow cyclic data
structures to be saved in a finite amount of space. Note that a data
structure with explicitly marked points of sharing fits nicely into
our general framework of representing data structures as annotated
fixed points.

The current storage framework without explicit sharing does not
require any special form of garbage collection. The modification
functions written with the help of the OutIn type class will automat-
ically clean up old nodes that are no longer needed. The ability of
explicit sharing would change this, a modification cannot blindly
free old nodes because they might be shared with other parts of the
data structure. The addition of explicit sharing requires support for
garbage collection.

7.4 Concurrency
The current framework only allows sequential access to the persis-
tent data structures. Concurrent access currently would most cer-
tainly cause undesirable effects. Parallel access to the same persis-
tent data structure is a topic for future research. We could benefit
from in-memory transactions systems like software transactional

memory [11] to manage concurrent threads to manipulate the same
structure. Transactional in-memory caches to persistent data struc-
tures have been shown useful before [6].

Another approach to concurrent access is making the data struc-
tures immutable. Using read instead of the fetch in the OutIn type
class would yield a framework were modification functions copy
the original structures. Different threads can now work on their own
version of a data structure. To make this approach practically usable
we need full sharing between different versions of the data struc-
tures and need a garbage collector to clean up versions that are no
longer used.

8. Related work
8.1 Generic programming with fixed points
The idea of using fixed points and recursion patterns to express
datatypes and operations on such datatypes is well-explored [1, 16,
21]. This approach to structuring data is also known as two-level
types [24]. While the original motivation for taking this view was
mainly to derive algorithms generically or calculate laws – such as
fusion laws for optimisation purposes, fixed-point representations
have also been used to modify datatypes in various ways.

A few examples: Garrigue [8] shows how writing datatypes in
an open way enables adding extra functionality at a later point.
Swierstra [26] presents a very polished approach to a similar prob-
lem tailored to Haskell. The Zipper data structure can be generi-
cally derived from a fixed-point view [13, 23]. Van Steenbergen et
al. [29] show how to use generic programming with annotated fixed
points to store source position information in abstract syntax trees.
Chuang and Mu [4] explore an approach similar to our own, using
fixed-point representations for storing data on disk in the context of
OCaml.

Most recursion patterns we use are standard, except for the
endo-apomorphism defined in Section 4.5. This pattern somewhat
resembles a futumorphism [27]. Monadic folds have been described
by Fokkinga [7].

8.2 Lazy IO
Lazy IO in Haskell has many associated problems. Pure code pro-
cessing values origination from effectful computations can trigger
side effects and technically behave as impure code. Kiselyov [18]
describes iteratee-based IO as a solution for the lazy IO problem.
Until now their approach has only been shown useful for linear IO
system, like processing a file line by line. Iterators have a structure
similar to algebras for list catamorphisms, it is not sure whether the
iteratee approach is extensible to different functor types, like the
tree base functor.

8.3 Persistent storage in Clean
In their paper Efficient and Type-Safe Generic Data Storage, Smet-
sers, Van Weelden and Plasmeijer [25] describe a generic storage
framework for the programming language Clean. Similar to our
storage framework, they aim at generically mapping functional data
structures to a persistent storage on disk. Using Chunks – a concept
similar to our storage heap – they are able to store individual parts
of the data structures on the disk without the need for reading and
writing the entire collection at once.

The major difference between their approach and ours is that
they do not slice the data structure at the recursive points, but
at the points where the actual element values are stored. This
means that every record value is stored in its own chunk, while the
entire data structure itself is stored in one single chunk. Updates of
individual record values can now be performed efficiently without
touching the entire collection, but for every structural change to the

collection the chunk containing the data structure itself (the Root
chunk) has to be read in and written back as a whole.

8.4 Happstack State
The Happstack [14] project consist of Haskell web server and a
state framework. The state framework is called Happstack-State. It
uses a record-based system in which users can add, delete, mod-
ify and retrieve records of data on a database file. The system uses
Template Haskell meta-programming to automatically derive stor-
age operations for custom datatypes. The derivation of operations
only works for monomorphic types which severely breaks modu-
larity. Happstack State only allows storing record values and does
not allow using custom domain specific data structures.

9. Conclusion
The power of programming languages is often correlated with the
functionality the standard libraries expose. Mainstream languages
all provide their own set of data structures that the programmer
can use to manage information in application memory. Using the
same structures to manage information on external storage devices
is generally not possible.

With this work, we provide the possibility to use functional data
structures implemented in Haskell to manage information outside
application memory. As a low-level storage we use a heap struc-
ture that stores blocks of binary data on a file on disk. The heap can
grow and shrink on demand. Operations traversing persistent recur-
sive data structures read or write non-recursive nodes from and to
the heap level by level. The incremental behaviour keeps the algo-
rithms efficient, the asymptotic running time on disk is equal to that
in-memory.

Writing persistent data structures requires to abstract from re-
cursion in both the definitions of the datatypes and the definitions of
the operations. The algebras used as a description for the recursions
operations remain pure and annotation-agnostic. Working with per-
sistent data structures is not very different from working with nor-
mal data structures, although all operations need to be lifted to the
monadic Heap context. Converting between in-memory and persis-
tent versions of a data structure is easy.

We encourage writing recursive datatype definitions as pattern
functors and operations in terms of recursion patterns. Datatypes
written this way are open to annotation which can be exploited in a
variety of ways.

Acknowledgments
We thank Chris Eidhof, Tom Lokhorst, José Pedro Magalhães and
the anonymous referees for their helpful remarks.

References
[1] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic pro-

gramming: An introduction. In Advanced Functional Programming,
pages 28–115, 1998.

[2] D. Barry and T. Stanienda. Solving the Java object storage problem.
Computer, 31:33–40, 1998.

[3] R. Bird and L. Meertens. Nested datatypes. In Mathematics of
Program Construction, pages 52–67. Springer, 1998.

[4] T.-R. Chuang and S.-C. Mu. Out-of-core functional programming with
type-based primitives. In Practical Aspects of Declarative Languages,
2000.

[5] K. Claessen and D. Sands. Observable sharing for functional circuit
description. In In Asian Computing Science Conference, pages 62–73.
Springer, 1999.

[6] A. G. Corona. TCache: A transactional data cache with configurable
persistence, 2009. hackageDB: TCache.

[7] M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Techni-
cal report, Memoranda Informatica 94-28, University of Twente, 1994.

[8] J. Garrigue. Code reuse through polymorphic variants. In Workshop
on Foundations of Software Engineering, 2000.

[9] N. Ghani and P. Johann. Initial algebra semantics is enough! In Typed
Lambda Calculus and Applications, number 4583 in LNCS, pages
207–222, 2007.

[10] A. Gill. Type-safe observable sharing in Haskell. In ACM SIGPLAN
Haskell Symposium, 2009.

[11] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In Principles and Practice of Parallel Program-
ming, pages 48–60. ACM, 2005.

[12] R. Hinze and R. Paterson. Finger trees: a simple general-purpose data
structure. Journal of Functional Programming, 16(2):197–217, 2006.

[13] R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. In Math-
ematics of Program Construction, LNCS, pages 148–174. Springer,
2002.

[14] A. Jacobson. HAppS-State: Event-based distributed state, 2009.
hackageDB: HAppS-State.

[15] P. Jansson and J. Jeuring. Polytypic data conversion programs. Science
of Computer Programming, 43:2002, 2001.

[16] P. Jansson and J. Jeuring. PolyP – a polytypic programming language
extension. In Principles of Programming Languages, pages 470–482.
ACM, 1997.

[17] P. Johann. Foundations for structured programming with GADTs. In
Principles of Programming Languages, pages 297–308, 2008.

[18] O. Kiselyov. iteratee: Iteratee-based I/O, 2009. hackageDB:
iteratee.

[19] L. Kolmodin and D. Stewart. binary: Binary serialisation for Haskell
values using lazy ByteStrings, 2009. hackageDB: binary.

[20] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):
413–424, September 1992.

[21] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In Functional Pro-
gramming Languages and Computer Architecture, pages 124–144.
Springer, 1991.

[22] J. Nievergelt and E. M. Reingold. Binary search trees of bounded
balance. In ACM symposium on Theory of computing, pages 137–142.
ACM, 1972.

[23] A. Rodriguez Yakushev, S. Holdermans, A. Löh, and J. Jeur-
ing. Generic programming with fixed points for mutually recursive
datatypes. In International Conference on Functional Programming,
pages 233–244. ACM, 2009.

[24] T. Sheard. Generic unification via two-level types and parameterized
modules. In International Conference on Functional Programming,
pages 86–97. ACM, 2001.

[25] S. Smetsers, A. van Weelden, and R. Plasmeijer. Efficient and type-
safe generic data storage. In Workshop on Generative Technologies,
Budapest, Hungary, April 5 2008. Electronic Notes in Theoretical
Computer Science.

[26] W. Swierstra. Data types à la carte. Journal of Functional Program-
ming, 18(4):423–436, 2008.

[27] T. Uustalu and V. Vene. Primitive (co)recursion and course-of-value
(co)iteration, categorically. Informatica, 10:5–26, 1999.

[28] T. van Noort, A. Rodriguez, S. Holdermans, J. Jeuring, and B. Heeren.
A lightweight approach to datatype-generic rewriting. In Workshop on
Generic Programming, pages 13–24. ACM, 2008.

[29] M. van Steenbergen, J. P. Magalhães, and J. Jeuring. Generic se-
lections of subexpressions. In Workshop on Generic Programming.
ACM, 2010.

[30] V. Vene and T. Uustalu. Functional programming with apomorphisms
(corecursion). In Nordic Workshop on Programming Theory, 1998.

[31] S. Visser. A generic approach to datatype persistency in Haskell.
Master’s thesis, Utrecht University, 2010. URL http://github.
com/sebastiaanvisser/msc-thesis/downloads.

http://github.com/sebastiaanvisser/msc-thesis/downloads
http://github.com/sebastiaanvisser/msc-thesis/downloads

	Introduction
	Working with fixed points
	Recursive datatypes
	Fixed points
	Recursion patterns

	Annotations
	Annotated fixed points
	Creating and removing annotations
	Example annotation: modification time
	Example annotation: debug trace
	Summary

	Annotated recursion patterns
	Catamorphism
	Anamorphism
	Apomorphism
	Partially annotated structures
	Modification functions
	Summary

	File-based storage heap
	Offset pointers
	Heap context
	Heap operations
	Summary

	Persistent data structures
	Persistent producers and consumers
	Persistent modification
	Summary

	Discussion and future work
	Laziness
	Other data structures
	Sharing
	Concurrency

	Related work
	Generic programming with fixed points
	Lazy IO
	Persistent storage in Clean
	Happstack State

	Conclusion

