Datatype-Generic Programming in Haskell

Andres Löh
(thanks to José Pedro Magalhães, Simon Peyton Jones and many others)

Skills Matter “In the Brain” – 9 April 2013
Copyright © 2013 Well-Typed LLP
Datatypes are great

- Easy to introduce.
- Distinguished from existing types by the compiler.
- Added safety.
- Can use domain-specific names for types and constructors.
- Quite readable.
Datatypes are not so great

- New datatypes have no associated library.
- Cannot be compared for equality, cannot be (de)serialized, cannot be traversed, ...

Fortunately, there is deriving.
Derivable classes

In Haskell 2010:

Eq, Ord, Enum, Bounded, Read, Show
Derivable classes

In Haskell 2010:

Eq, Ord, Enum, Bounded, Read, Show

In GHC (in addition to the ones above):

Functor, Traversable, Typeable, Data, Generic
What about other classes?

For many additional classes, we can intuitively derive instances.

But can we also do it in practice?
What about other classes?

For many additional classes, we can intuitively derive instances.

But can we also do it in practice?

Options:

- use an external preprocessor,
- use Template Haskell,
- use data-derive,
- or use the GHC `Generic` support.
From the user perspective:

Step 1

Define a new datatype and derive `Generic` for it.

```haskell
data MyType a b =
  Flag Bool | Combo (a, a) | Other b Int (MyType a a)

deriving Generic
```
From the user perspective:

Step 2

Use a library that makes use of GHC Generic and give an empty instance declaration for a suitable type class:

```haskell
import Data.Binary

...  

instance (Binary a, Binary b) ⇒ Binary (MyType a b)
```
Analyzing "deriving"
Equality as an example

class Eq' a where
 eq :: a → a → Bool

Let’s define some instances by hand.
Equality on binary trees

```haskell
data T = L | N T T

instance Eq' T where
  eq L L = True
  eq (N x1 y1) (N x2 y2) = eq x1 x2 && eq y1 y2
  eq _ _ = False
```
data Choice = I Int | C Char | B Choice Bool | S Choice
data Choice = I Int | C Char | B Choice Bool | S Choice

Assuming instances for Int, Char, Bool:

instance Eq’ Choice where
 eq (I n₁) (I n₂) = eq n₁ n₂
 eq (C c₁) (C c₂) = eq c₁ c₂
 eq (B x₁ b₁) (B x₂ b₂) = eq x₁ x₂ &&
 eq b₁ b₂
 eq (S x₁) (S x₂) = eq x₁ x₂
 eq _ _ = False
What is the pattern?

- How many cases does the function definition have?
- What is on the right hand sides?
What is the pattern?

- How many cases does the function definition have?
- What is on the right hand sides?
- How many clauses are there in the conjunctions on each right hand side?
What is the pattern?

- How many cases does the function definition have?
- What is on the right hand sides?
- How many clauses are there in the conjunctions on each right hand side?

Relevant concepts:

- number of constructors in datatype,
- number of fields per constructor,
- recursion leads to recursion,
- other types lead to invocation of equality on those types.
More datatypes

\[
data \text{ Tree } a = \text{ Leaf } a \mid \text{ Node } (\text{ Tree } a) (\text{ Tree } a)
\]

Like before, but with labels in the leaves.
More datatypes

```haskell
data Tree a = Leaf a | Node (Tree a) (Tree a)
```

Like before, but with labels in the leaves.

```haskell
instance Eq' a ⇒ Eq' (Tree a) where
  eq (Leaf n₁) (Leaf n₂) = eq n₁ n₂
  eq (Node x₁ y₁) (Node x₂ y₂) = eq x₁ x₂ && eq y₁ y₂
  eq _ _ _ = False
```

Well-Typed
Yet another equality function

This is often called a rose tree:

```haskell
data Rose a = Fork a [Rose a]
```

Well-Typed
Yet another equality function

This is often called a rose tree:

```haskell
data Rose a = Fork a [Rose a]
```

Assuming an instance for lists:

```haskell
instance Eq' a ⇒ Eq' (Rose a) where
    eq (Fork x1 xs1) (Fork x2 xs2) = eq x1 x2 && eq xs1 xs2
```
Parameterization of types is reflected by parameterization of the functions (via constraints on the instances).

Using parameterized types in other types then works as expected.
In order to define equality for a datatype:

- introduce a parameter for each parameter of the datatype,
- introduce a case for each constructor of the datatype,
- introduce a final catch-all case returning \texttt{False},
- for each of the other cases, compare the constructor fields pair-wise and combine them using \texttt{(&&)},
- for each field, use the appropriate equality instance.
The equality pattern
An informal description

In order to define equality for a datatype:

- introduce a parameter for each parameter of the datatype,
- introduce a case for each constructor of the datatype,
- introduce a final catch-all case returning `False`,
- for each of the other cases, compare the constructor fields pair-wise and combine them using `(&&)`,
- for each field, use the appropriate equality instance.

If we can describe it, can we write a program to do it?
Interlude:

type isomorphisms
Two types \(A\) and \(B\) are called isomorphic if we have functions

\[
\begin{align*}
f &:: A \rightarrow B \\
g &:: B \rightarrow A
\end{align*}
\]

that are mutual inverses, i.e., if

\[
\begin{align*}
f \circ g &\equiv \text{id} \\
g \circ f &\equiv \text{id}
\end{align*}
\]
Example

Lists and Snoc-lists are isomorphic

```haskell
data SnocList a = Lin | SnocList a :> a
```
Example

Lists and Snoc-lists are isomorphic

```haskell
data SnocList a = Lin | SnocList a :> a

listToSnocList :: [a] → SnocList a
listToSnocList [] = Lin
listToSnocList (x : xs) = listToSnocList xs :> x

snocListToList :: SnocList a → [a]
snocListToList Lin = []
snocListToList (xs :> x) = x : snocListToList xs
```

We can (but won’t) prove that these are inverses.
The idea of datatype-generic programming

- Represent a type A as an isomorphic type $\text{Rep } A$.

 If a limited number of type constructors is used to build $\text{Rep } A$, then functions defined on each of these type constructors can be lifted to work on the original type A and thus on any representable type.
The idea of datatype-generic programming

- Represent a type A as an isomorphic type $\text{Rep } A$.
- If a limited number of type constructors is used to build $\text{Rep } A$, well-typed.
The idea of datatype-generic programming

- Represent a type A as an isomorphic type $\text{Rep } A$.
- If a limited number of type constructors is used to build $\text{Rep } A$,
- then functions defined on each of these type constructors
The idea of datatype-generic programming

- Represent a type A as an isomorphic type $\text{Rep } A$.
- If a limited number of type constructors is used to build $\text{Rep } A$,
- then functions defined on each of these type constructors
- can be lifted to work on the original type A.
The idea of datatype-generic programming

- Represent a type \(A \) as an isomorphic type \(\text{Rep} A \).
- If a limited number of type constructors is used to build \(\text{Rep} A \),
- then functions defined on each of these type constructors
- can be lifted to work on the original type \(A \)
- and thus on any representable type.
Choice between constructors

Which type best encodes choice between constructors?

Well, let's restrict to two constructors first.

Booleans encode choice, but do not provide information what the choice is about.

```
data Either a b = Left a | Right b
```

Choice between three things:

```
type Either 3 a b c = Either a (Either b c)
```

Well-Typed
Choice between constructors

Which type best encodes choice between constructors?

Well, let’s restrict to two constructors first.
Choice between constructors

Which type best encodes choice between constructors?

Well, let’s restrict to two constructors first.

Booleans encode choice, but do not provide information what the choice is about.
Choice between constructors

Which type best encodes choice between constructors?

Well, let’s restrict to two constructors first.

Booleans encode choice, but do not provide information what the choice is about.

\[
\text{data } \text{Either } a \ b = \text{Left } a \mid \text{Right } b
\]
Choice between constructors

Which type best encodes choice between constructors?

Well, let’s restrict to two constructors first.

Booleans encode choice, but do not provide information what the choice is about.

```
data Either a b = Left a | Right b
```

Choice between three things:

```
type Either₃ a b c = Either a (Either b c)
```
Which type best encodes combining fields?
Combining constructor fields

Which type best encodes combining fields?

Again, let’s just consider two of them.
Combining constructor fields

Which type best encodes combining fields?

Again, let’s just consider two of them.

data (a, b) = (a, b)
Which type best encodes combining fields?

Again, let’s just consider two of them.

\[
\text{data}\ (a, b) = (a, b)
\]

Combining three fields:

\[
\text{type}\ \text{Triple}\ a\ b\ c = (a, (b, c))
\]
What about constructors without arguments?

We need another type.
What about constructors without arguments?

We need another type.

Well, how many values does a constructor without argument encode?
What about constructors without arguments?

We need another type.

Well, how many values does a constructor without argument encode?

data () = ()
Representing types
Representing types

To keep representation and original types apart, let's define isomorphic copies of the types we need:

```
data U = U
data a :+: b = L a | R b
data a :+: b = a :+: b
```
Representing types

To keep representation and original types apart, let’s define isomorphic copies of the types we need:

```
data U       = U
data a :+: b = L a | R b
data a :+: b = a :+: b
```

We can now get started:

```
data Bool = False | True
```

How do we represent `Bool`?
To keep representation and original types apart, let’s define isomorphic copies of the types we need:

\[
\begin{align*}
data \ U &= U \\
data \ a :+: b &= L a | R b \\
data \ a :*: b &= a :*: b
\end{align*}
\]

We can now get started:

\[
data \ \text{Bool} = \text{False} | \text{True}
\]

How do we represent \text{Bool} ?

\[
\text{type} \ \text{RepBool} = U :+: U
\]
A class for representable types

```haskell
class Generic a where
    type Rep a
    from :: a → Rep a
    to    :: Rep a → a
```

The type `Rep` is an associated type.
A class for representable types

class Generic a where
 type Rep a
 from :: a → Rep a
 to :: Rep a → a

The type Rep is an associated type.

Equivalent to defining Rep separately as a type family:

type family Rep a
Representable Booleans

\[
\text{instance Generic Bool where}
\]

\[
\text{type Rep Bool = U :+: U}
\]

\[
\text{from False = L U}
\]

\[
\text{from True = R U}
\]

\[
\text{to (L U) = False}
\]

\[
\text{to (R U) = True}
\]
Representable lists

```haskell
instance Generic [a] where
  type Rep [a] = U :+: (a :+: [: [a]]
  from [] = L U
  from (x : xs) = R (x :+: xs)
  to (L U) = []
  to (R (x :+: xs)) = x : xs
```

Note:
- shallow transformation,
- no constraint on Generic a required.
Representable lists

```haskell
instance Generic [a] where
    type Rep [a] = U :+: (a :+: [a])
from [] = L U
from (x : xs) = R (x :+: xs)
to (L U) = []
to (R (x :+: xs)) = x : xs
```

Note:

- shallow transformation,
- no constraint on `Generic a` required.
Representable trees

```
instance Generic (Tree a) where
  type Rep (Tree a) = a :+: (Tree a :*: Tree a)
  from (Leaf n ) = L n
  from (Node x y ) = R (x :*: y)
  to (L n ) = Leaf n
  to (R (x :*: y)) = Node x y
```

Well-Typed
Representable rose trees

```
instance Generic (Rose a) where
  type Rep (Rose a) = a :: [Rose a]
  from (Fork x xs) = x :: xs
  to (x :: xs) = Fork x xs
```
Representing primitive types

We don’t . . .
Back to equality
Intermediate summary

- We have defined class `Generic` that maps datatypes to representations built up from `U`, `(:+:)`, `(*:)` and other datatypes.
- If we can define equality on the representation types, then we should be able to obtain a generic equality function.
- Let us apply the informal recipe from earlier.
A class for generic equality

class GEq a where
 geq :: a → a → Bool
instance (GEq a, GEq b) ⇒ GEq (a :+: b) where
 geq (L a₁) (L a₂) = geq a₁ a₂
 geq (R b₁) (R b₂) = geq b₁ b₂
 geq _ _ _ = False
instance (GEq a, GEq b) ⇒ GEq (a × b) where
 geq (a₁ × b₁) (a₂ × b₂) = geq a₁ a₂ && geq b₁ b₂

instance GEq U where
 geq U U = True
Instances for primitive types

instance GEq Int where
 geq = (==) :: Int → Int → Bool
What now?
Dispatching to the representation type

defaultEq :: (Generic a, GEq (Rep a)) ⇒ a → a → Bool
defaultEq x y ≡ geq (from x) (from y)
Dispatching to the representation type

defaultEq :: (Generic a, GEq (Rep a)) ⇒ a → a → Bool
defaultEq x y = geq (from x) (from y)

Defining generic instances is now trivial:

instance GEq Bool where
geq = defaultEq
instance GEq a ⇒ GEq [a] where
geq = defaultEq
instance GEq a ⇒ GEq (Tree a) where
geq = defaultEq
instance GEq a ⇒ GEq (Rose a) where
geq = defaultEq
Dispatching to the representation type

```
defaultEq :: (Generic a, GEq (Rep a)) ⇒ a → a → Bool
defaultEq x y = geq (from x) (from y)
```

Or with the DefaultSignatures language extension:

```
class GEq a where
    geq :: a → a → Bool
    default geq :: (Generic a, GEq (Rep a)) ⇒ a → a → Bool
    geq = defaultEq

instance GEq Bool
instance GEq a ⇒ GEq [a]
instance GEq a ⇒ GEq (Tree a)
instance GEq a ⇒ GEq (Rose a)
```
Isn’t this as bad as before?
Haven’t we just replaced some tedious work (defining equality for a type) by some other tedious work (defining a representation for a type)?
Amount of work

Question

Haven’t we just replaced some tedious work (defining equality for a type) by some other tedious work (defining a representation for a type)?

Yes, but:

- The representation has to be given only once, and works for potentially many generic functions.
- Since there is a single representation per type, it could be generated automatically by some other means (compiler support, TH).
- In other words, it’s sufficient if we can use `deriving` on class `Generic`.
So can we derive \textbf{Generic}?
So can we derive **Generic**?

Yes (with DeriveGeneric) ...
So can we derive \textbf{Generic}?

Yes (with \texttt{DeriveGeneric})...

...but the representations are not quite as simple as we’ve pretended before:

\begin{verbatim}
class Generic a where
 type Rep a
 from :: a \rightarrow Rep a
 to :: Rep a \rightarrow a
\end{verbatim}
So can we derive **Generic**?

Yes (with DeriveGeneric)...

...but the representations are not quite as simple as we've pretended before:

```haskell
class Generic a where
  type Rep a :: * → *
  from :: a → Rep a x
  to :: Rep a x → a
```

Representation types are actually of kind $\ast \rightarrow \ast$.
An extra argument?

- It’s a pragmatic choice.
- Facilitates some things, because we also want to derive classes parameterized by type constructors (such as `Functor`).
- For now, let’s just try to “ignore” the extra argument.
Simple vs. GHC representation

Old:

```
\textbf{type instance} \text{Rep} (\text{Tree} \ a) = a :+:(\text{Tree} \ a :\star: \text{Tree} \ a)
```

New:

```
\textbf{type instance} \text{Rep} (\text{Tree} \ a) =
\quad \text{M1} \ D \ D1\text{Tree}
\quad \quad (\text{M1} \ C \ C1\_0\text{Tree}
\quad \quad \quad (\text{M1} \ S \ \text{NoSelector} \ (K1 \ P \ a))
\quad \quad :+:
\quad \text{M1} \ C \ C1\_1\text{Tree}
\quad \quad (\text{M1} \ S \ \text{NoSelector} \ (K1 \ R \ (\text{Tree} \ a))
\quad \quad :\star:)
\quad )
\)
Simple vs. GHC representation

Old:

```haskell
type instance Rep (Tree a) = a :+: (Tree a :*: Tree a)
```

New:

```haskell
type instance Rep (Tree a) =

 a :+: (Tree a :*: Tree a)
```

Well-Typed
Familiar components

Everything is now lifted to kind \( \star \rightarrow \star \):

\[
\begin{align*}
\textbf{data} & \quad \text{U1} \quad a = \text{U1} \\
\textbf{data} & \quad (f :+: g) \ a = L1 \ (f \ a) \mid R1 \ (g \ a) \\
\textbf{data} & \quad (f :+: g) \ a = f \ a :+: g \ a
\end{align*}
\]
This is an extra type constructor wrapping every constant type:

```haskell
newtype K1 t c a = K1 { unK1 :: c }
data P -- marks parameters
data R -- marks other occurrences
```

The first argument `t` is not used on the right hand side. It is supposed to be instantiated with either `P` or `R`.
\textbf{newtype} \texttt{M1 t i f a = M1 \{unM1 :: f a\}}

data \texttt{D} -- marks datatypes

data \texttt{C} -- marks constructors

data \texttt{S} -- marks (record) selectors

Depending on the tag \texttt{t}, the position \texttt{i} is to be filled with a datatype belonging to class \texttt{Datatype}, \texttt{Constructor}, or \texttt{Selector}. 
Meta information – contd.

class Datatype d where
    datatypeName :: w d f a → String
    moduleName :: w d f a → String
Meta information – contd.

```haskell
class Datatype d where
 datatypeName :: w d f a → String
 moduleName :: w d f a → String

instance Datatype D1Tree where
 datatypeName _ = "Tree"
 moduleName _ = ...
```

Similarly for constructors.
Adapting the equality class(es)

Works on representation types:

```haskell
class GEq' f where
 geq' :: f a → f a → Bool
```

Works on “normal” types:

```haskell
class GEq a where
 geq :: a → a → Bool
 default geq :: (Generic a, GEq' (Rep a)) ⇒ a → a → Bool
 geq x y = geq' (from x) (from y)
```

Instance for `GEq Int` and other primitive types as before.
instance (GEq' f, GEq' g) ⇒ GEq' (f :+: g) where
  geq' (L1 x) (L1 y) = geq' x y
  geq' (R1 x) (R1 y) = geq' x y
  geq' _ _ = False

Similarly for :*: and U1.
instance (GEq’ f, GEq’ g) ⇒ GEq’ (f :+: g) where
  geq’ (L1 x) (L1 y) = geq’ x y
  geq’ (R1 x) (R1 y) = geq’ x y
  geq’ _ _ = False

Similarly for :*: and U1.

An instance for constant types:

instance GEq a ⇒ GEq’ (K1 t a) where
  geq’ (K1 x) (K1 y) = geq x y
Adapting the equality classes – contd.

For equality, we ignore all meta information:

```haskell
instance GEq' f ⇒ GEq' (M1 t i f) where
geq' (M1 x) (M1 y) = geq' x y
```

All meta information is grouped under a single datatype, so that we can easily ignore it all if we want to.
For equality, we ignore all meta information:

```haskell
instance GEq' f ⇒ GEq' (M1 t i f) where
 geq' (M1 x) (M1 y) = geq' x y
```

All meta information is grouped under a single datatype, so that we can easily ignore it all if we want to.

Functions such as `show` and `read` can be implemented generically by accessing meta information.
Constructor classes

To cover classes such as `Functor`, `Traversable`, `Foldable` generically, we need a way to map between a type constructor and its representation:

```haskell
class Generic1 f where
 type Rep1 f :: * → *
 from1 :: f a → Rep1 f a
 to1 :: Rep1 f a → f a
```

Use the same representation type constructors, plus

```haskell
data Par1 p = Par1 { unPar1 :: p }
data Rec1 f p = Rec1 { unRec1 :: f p }
```

GHC from version 7.6 is able to derive `Generic1`, too.
Conclusions

- For more examples, look at `generic-deriving`.
- As a user of libraries, less boilerplate, easy to use.
- Safer (but less powerful) than Template Haskell.
- As a library author: consider using this!
Thank you – Questions?
Extra slides
Template Haskell

- Has the full syntax tree. Can do much more.
- You have to do more work to derive using TH.
- It’s trickier to get it right. Corner cases. Name manipulation.
- Datatype-generic functions are type-checked.
- Uniform interface to the user.
- Admittedly, allowing `deriving` would be even easier.
Similar ideas.
Need other representations.
Except for SYB, no direct GHC support.
But we can convert! (ICFP 2013 submission)