
Dependently Typed Grammars

Kasper Brink1, Stefan Holdermans2, and Andres Löh1

1 Department of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands

{kjbrink,andres}@cs.uu.nl
2 Vector Fabrics

Paradijslaan 28, 5611 KN Eindhoven, The Netherlands
stefan@vectorfabrics.com

Abstract. Parser combinators are a popular tool for designing parsers
in functional programming languages. If such combinators generate an
abstract representation of the grammar as an intermediate step, it be-
comes easier to perform analyses and transformations that can improve
the behaviour of the resulting parser. Grammar transformations must
satisfy a number of invariants. In particular, they have to preserve the
semantics associated with the grammar. Using conventional type sys-
tems, these constraints cannot be expressed satisfactorily, but as we
show in this article, dependent types are a natural fit. We present a
framework for grammars and grammar transformations using Agda. We
implement the left-corner transformation for left-recursion removal and
prove a language-inclusion property as use cases.

Key words: context-free grammars, grammar transformation, depen-
dently typed programming

1 Introduction

Parser combinators are a popular tool for designing parsers in functional pro-
gramming languages. Classic combinator libraries [1–4] directly encode the se-
mantics of the parsing process. The user of such a library builds a function that
– when run – attempts to parse some input and produces a result on a successful
parse.

Many of today’s parser combinator libraries, however, try to compute much
more than merely the result. The reasons are manifold, but most prominently
efficiency and error reporting. The technique is to choose an abstract representa-
tion for the parser that enables computing additional information, such as lists
of errors and their positions or lookahead tables, or to perform optimizations
such as left-factoring automatically.

If one takes this approach to the extreme, one ends up with a combinator
library that builds an abstract representation of the entire grammar first, cou-
pled with the desired semantics. This representation still contains the complete
information the user has specified, and is therefore most suitable for performing

analyses and transformations. After the grammar has been transformed to sat-
isfaction, the library can then interpret the grammar as a parser, again with a
choice on which parsing algorithm to employ.

However, operating on the abstract representation is somewhat tricky. There
are several invariants that such operations must satisfy. In particular, they have
to preserve the semantics associated with the grammar. Using conventional type
systems, writing transformations in even a type-correct way can therefore be
difficult, and even if it succeeds, the underlying constraints can often not be
expressed satisfactorily.

In this article, we present a framework for grammars and grammar trans-
formations using the dependently typed language Agda [5, 6]. We show that
dependent types are a natural fit for the kinds of constraints and invariants
one wants to express when dealing with grammars. In our framework, gram-
mars are explicitly parameterized over the sets of terminals and nonterminals.
We can talk about the left- and right-hand sides of productions in the types of
values, and express properties such as that a certain production does not have
an empty right-hand side. Each production carries its semantics, and the shape
of the production determines the type of the associated semantic function.

As a case study, we present the left-corner transform for removal of left re-
cursion from a grammar. Contrary to most other presentations of this grammar
transformation, we also show how the semantic functions are transformed. Fur-
thermore, we explain how properties about the transformation can be proved if
desired, and give a language-inclusion property as an example.

The paper concludes with a discussion of what we have achieved and what
we envision for the future, and a treatment of related work.

The complete Agda code on which this paper is based is available for down-
load [7].

2 Grammar framework

An important aspect of our approach is that we do not encode a grammar merely
as a set of production rules that can be applied to sequences of symbols. Instead,
each grammar has an associated semantics, and the grammar and semantics are
encoded together. For every production of the grammar there is a corresponding
semantic function, which is applied during parsing when that production is rec-
ognized in order to compute a parse result. Naturally, the types of the semantic
functions must be consistent with the way in which they are applied. Below, we
describe how this is enforced in our framework.

2.1 Representing grammars

We begin by describing how grammars and the associated semantic functions
are represented. A number of parameters (such as the type of nonterminals and
terminals) are fixed for the whole development. We therefore assume that all
subsequent definitions in this section are part of an Agda parameterized module:

2

module Grammar (Terminal : Set) (Nonterminal : Set)
(?=t : Decidable {Terminal } ≡)
(?=n : Decidable {Nonterminal } ≡)
(J K : Nonterminal → Set) where

We require that both terminals and nonterminals come with decision procedures
for equality.

We define a Symbol type, which is the union of the Terminal and Nonterminal
types:

data Symbol : Set where
st : Terminal → Symbol
sn : Nonterminal → Symbol

In the following, we will often need lists of symbols, terminals and nonterminals,
so we define

Symbols = List Symbol
Terminals = List Terminal
Nonterminals = List Nonterminal

as abbreviations.
To ensure that the semantic functions of the grammar are consistently typed

with respect to the productions, the module signature introduces the map-
ping J K, which assigns a semantic type to each nonterminal. This is the type of
values that are produced when parsing that nonterminal (i. e., parsing A results
in values of type J A K).

The types of the semantic functions are determined by the nonterminals
in the corresponding productions, and the semantic mapping J K. A semantic
function for a production computes a value for the left-hand side (lhs) from
the parse results of the right-hand side (rhs) nonterminals. Thus, its argument
types are the rhs nonterminal types and its result type is the lhs nonterminal
type. For example, the production A→ aB bC c has a semantic function of type
J B K → J C K → J A K. The semantic type of a production is the type of its
semantic function; we shall write the semantic type of a production A → β as
J β ||A K. This can be defined in Agda as follows:

J || K : Symbols → Nonterminal → Set
J [] ||A K = J A K
J st :: β ||A K = J β ||A K
J sn B :: β ||A K = J B K→ J β ||A K

Each nonterminal B in the rhs adds an argument of type J B K to the semantic
type, whereas terminal symbols in the rhs are ignored. 3

3 It would be possible to associate semantics also with terminals (for example, if all
identifiers of a language are represented by a common terminal), but in order to keep
the presentation simple, we do not consider this variation in this paper.

3

E → E B N | N

B → + | −

N → 0 | 1

Fig. 1: Example grammar.

We can now define a datatype to represent a production:

data Production : Set where
prod : (A : Nonterminal)→ (β : Symbols)→ J β ||A K→ Production

A production consists of an lhs nonterminal A, the rhs symbols β, and an
associated semantic function of type J β || A K. Agda’s dependent type systems
enables us to concisely specify how the type of the semantic function depends
on the shape of the production.

As an example of the representation of grammars in our framework we con-
sider the grammar shown in Figure 1. It is a small grammar fragment that
derives (from the start symbol E) a language of arithmetic expressions involving
the numbers 0 and 1, and left-associative binary operators + and −. We shall
refer to this example grammar throughout the article.

For this grammar, we define a semantics that evaluates an arithmetic expres-
sion to the number it represents. The nonterminals E and N each evaluate to a
natural number, and B evaluates to a binary operator on naturals. Given a suit-
able definition for the type Nonterminal , we can define the semantic mapping
as:

J K : Nonterminal → Set
J E K = N
J N K = N
J B K = N→ N→ N

By assigning these types to the nonterminals, we also fix the semantic types of
the productions. Below, we show the semantic types for four productions from
the example grammar:

E → E B N J E B N || E K = N→ (N→ N→ N)→ N→ N
E → N J N || E K = N→ N
B → + J + || B K = N→ N→ N
N → 1 J 1 ||N K = N

We can encode these productions in Agda using the Production datatype (with
terminal symbols represented by the built-in character type). This encoding
includes the desired semantic functions, which match the types shown above.

4

p1 = prod E (sn E :: sn B :: sn N :: []) (λ x f y → f x y)
p2 = prod E [sn N] id
p3 = prod B [st ’+’] +
p4 = prod N [st ’1’] 1

2.2 Constraints on productions

Except for the consistency of the semantic function with respect to the lhs
and rhs nonterminals, the Production datatype imposes no constraints on the
form of a production. In some cases we wish to specify at the type level that
a production has a specific left-hand side. We shall need this information when
constructing a parser from a list of productions in Section 2.5, in order to show
that the parse results of the constructed parser are consistently typed. To con-
strain the lhs of a production, we define an indexed datatype ProductionLHS :

projlhs : Production → Nonterminal
projlhs (prod A) = A
data ProductionLHS : Nonterminal → Set where

prodlhs : (p : Production)→ ProductionLHS (projlhs p)

In Agda, a constructor of a datatype can restrict the index of the datatype: in this
case, the wrapper constructor prodlhs wraps around an “ordinary” production p
and uses the lhs of p as the index. In this way we expose information about
the value of the production at the type level. We define a synonym for a list of
productions with a specific lhs nonterminal:

ProductionsLHS : Nonterminal → Set
ProductionsLHS A = List (ProductionLHS A)

Such a list can be obtained by filtering an arbitrary list of productions with the
function filterLHS :

filterLHS : (A : Nonterminal)→ Productions → ProductionsLHS A
filterLHS [] = []
filterLHS A (prod B β sem :: ps) with A ?=n B
filterLHS A (prod .A β sem :: ps) | yes refl = prodlhs (prod A β sem) ::

filterLHS A ps
filterLHS A (prod B β sem :: ps) | no = filterLHS A ps

For a non-empty input list, the lhs of the first production, B , is compared to
the specified nonterminal, A, in the with-clause. If the equality test ?=n is
successful, it returns a proof refl which is the single constructor of the equality
type ≡ . Pattern matching on refl exposes this equality to the type system.
In the yes-branch, we can therefore assume that B is equal to A (as expressed
in Agda using the dot-pattern .A) and add the production to a list of type
ProductionLHS A. In the no-branch, the production is discarded, and we con-
tinue with the rest of the list. The result type of filterLHS holds evidence of the
filtering step that has been performed.

5

E

E

N

1

B

+

N

1

(a) Symbols in nodes

E → E B N

E → N

N → 1

B → + N → 1

(b) Productions in nodes

Fig. 2: Representations of parse trees.

2.3 Parse trees

To enable us to state and prove properties about grammars and their transforma-
tions we must define a representation for parse trees. In the conventional depic-
tion of parse trees, internal nodes are labelled with nonterminals, and leaves with
terminals. For a parse tree to be consistent with a grammar, an internal node A
and its direct descendants X1, . . . , Xn must form a production A → X1 · · · Xn

of the grammar. In Figure 2a, we show the conventional representation of the
parse tree for the sentence “1 + 1” in the example grammar.

In our case, it is more convenient to label the nodes of the parse tree with
productions. This makes it easier to express constraints on the productions (e. g.,
that they belong to a certain grammar), and enables us to store the semantic
functions in the parse tree, so that a parse result can be computed from it. The
root of a parse tree shall refer to the lhs nonterminal of the production in the root
node. Figure 2b shows how we represent the parse tree for the sentence “1 + 1”
in our framework.

Our representation of parse trees introduces redundant information between
a node and its children. To ensure that a parse tree is well-formed, we require
that the nonterminals in the rhs of the production in each node correspond to
the roots of its subtrees. This correspondence is encoded with the help of the
relation ∼ :

∼ : Symbols → Nonterminals → Set
β ∼ ns = filterN β ≡ ns

where filterN : Symbols → Nonterminals filters the nonterminals out of a list of
symbols.

We wish to enforce that the productions in a parse tree belong to a certain
grammar. In some cases, the productions are subject to additional constraints,
such as the requirement that the rhs is nonempty. The parse-tree datatype
defined below is therefore parametrized over a predicate Q : Production → Set ,
which represents the combined constraints that are satisfied by each production.
The datatype is implemented with two mutually recursive definitions:

6

mutual
data ParseTree (Q : Production → Set) : Set where

node : (p : Production)→ Q p → (cs : List (ParseTree Q))→
(projrhs p ∼ map projroot cs)→ ParseTree Q

projroot : ∀ {Q } → ParseTree Q → Nonterminal
projroot (node (prod A)) = A

A node of a parse tree contains a Production (which includes a semantic func-
tion), a proof that it satisfies the predicate Q , a list of children, and a proof
that the nonterminals on the rhs of the production match the roots of the child
parse trees. The leaves of the tree contain productions with a rhs that consists
entirely of terminals (or is empty). 4 In the function projroot , the type argu-
ment Q remains implicit, as indicated by the curly brackets. Agda will try to
infer the argument whenever the function is called.

Given a parse tree, it is straight-forward to compute the sentence it repre-
sents:

merge : Symbols → List Terminals → Terminals
merge [] [] = []
merge (st b :: β) us = b :: merge β us
merge (sn B :: β) (u :: us) = u ++ merge β us
merge = []
sentence : ∀ {Q } → ParseTree Q → Terminals
sentence (node (prod β) cs) = merge β (map sentence cs)

The function sentence traverses the children of a node recursively. The helper
function merge then concatenates the recursively computed subsequences with
the terminals stored in the production of the node.

Another interesting computation over a parse tree is the semantic value that
is represented by such a tree:

semantics : ∀ {Q } → (pt : ParseTree Q)→ J projroot pt K

The implementation performs a fold on the parse tree, building up the result
starting from the leaves by applying all the semantic functions stored in the
nodes. We omit the code for brevity.

2.4 Parser combinators

To construct a parser for a grammar encoded in our representation, we make use
of a parser combinator library. Parser combinators form a domain-specific em-
bedded language for the implementation of parsers in functional languages such
as Agda. The interface consists of several elementary parsers, and combinators
4 The definition of ParseTree does not pass Agda’s positivity checker. This is mainly

a problem of the current checker, not a fundamental problem. We can circumvent
the problem by rewriting our code slightly, but here, we opt for readability.

7

that allow us to construct complex parsers out of simpler ones. This formalism
offers a convenient way to implement parsers using a notation that stays close
to the underlying grammar. Here, we review one possible interface for parser
combinators; their implementation is described elsewhere [2, 8].

The basic type Parser A denotes a parser that returns values of type A. We
define the following elementary parsers:

symbol : Terminal → Parser Terminal
succeed : ∀ {A} → A→ Parser A
fail : ∀ {A} → Parser A

The parser symbol recognizes a single terminal symbol and returns that symbol
as a witness of a successful parse. The parser succeed recognizes the empty string
(which always succeeds) and returns the supplied value of type A as the parse
result. The parser fail always fails, so it never has to produce a value of the
result type A.

The library contains the following elementary combinators:

< |> : ∀ {A} → Parser A→ Parser A→ Parser A
<∗> : ∀ {A B } → Parser (A→ B)→ Parser A→ Parser B

The combinator < |> implements a choice between two parsers: the resulting
parser recognizes either a sentence of the left parser or of the right parser. The
result types of the parsers must be the same. The combinator <∗> implements
sequential composition: the resulting parser recognises a sentence of the left
parser followed by a sentence of the right parser. The parse results of the two
parsers are combined by function application: the left parser produces a function,
the argument type of which must match the result type of the right parser. We
also define the derived combinator <∗ , which recognizes its arguments in
sequence just like <∗> , but which only returns the parse result of the left
parser, discarding the result of the right.

2.5 Generating parsers

The function generateParser constructs a parser for a grammar by mapping its
productions onto the parser combinator interface, and it has type:

generateParser : Productions → (S : Nonterminal)→ Parser J S K

It takes a list of productions of the grammar and a start nonterminal S , and
constructs a parser for S that returns values of type J S K. The implementation
of the function makes use of three mutually recursive subfunctions:

generateParser gram = gen where
mutual

gen : (A : Nonterminal)→ Parser J A K
gen A = (foldr < |> fail ◦ map genAlt ◦ filterLHS A) gram

8

genAlt : ∀ {A} → ProductionLHS A→ Parser J A K
genAlt (prodlhs (prod A β sem)) = buildParser β (succeed sem)
buildParser : ∀ {A} β → Parser J β ||A K→ Parser J A K
buildParser [] p = p
buildParser (st b :: β) p = buildParser β (p <∗ symbol b)
buildParser (sn B :: β) p = buildParser β (p <∗> gen B)

The function gen takes a nonterminal A and generates a parser for A that
returns values of type J A K. It first selects all productions with lhs A from
the grammar using filterLHS . To each of these productions it applies genAlt ,
which generates a parser that corresponds to that particular alternative for A.
The alternatives are combined into a single parser by folding with the parallel
composition combinator < |> (which has fail as a unit).

The function genAlt generates a parser for a single alternative; that is, the
derivation always starts with the specified production. Note that the connection
between the left-hand side nonterminal of the production and the result type of
the parser is made in the type signature of genAlt . The semantic function sem
is lifted to the trivial parser succeed sem with type Parser J β ||A K. The actual
parser construction is performed by buildParser .

The function buildParser builds the parser by recursing over the right-hand
side symbols β. The argument p is an accumulating parameter that is expanded
into a parser that recognizes β. When β is empty, we return the constructed
parser p, which has type Parser J A K. If β starts with a terminal b, we recog-
nize it with symbol b, leaving the semantic types unchanged. If β starts with a
nonterminal B , we generate a parser for B by calling gen recursively, and ap-
pend this to p. Note that in this branch, p has type Parser (J B K→ J β ||A K),
and gen B has type Parser J B K, and the sequential composition removes the
leftmost argument from the parser’s result type.

3 Left-corner transform

The function generateParser from the preceding section does not pass Agda’s
termination checker. This is not surprising, since we do not impose any restric-
tions on the grammar at this point. In particular, a left-recursive grammar will
lead to a non-terminating parser.

In this section, we discuss the left-corner transform (lct), a grammar trans-
formation that removes left recursion from a grammar [9, 10].

3.1 Transformation rules

The transformation is presented below as a set of transformation rules that are
applied to the productions of a grammar. If the grammar satisfies certain pre-
conditions, applying the rules yields a transformed grammar that derives the
same language and that does not contain left-recursive nonterminals. A non-
terminal A is left-recursive if it derives a sequence of symbols beginning with

9

A itself (i. e., A ∗=⇒ Aβ). Such nonterminals can lead to non-termination with
top-down parsers.

The lct is based on manipulation of the left corners of the grammar. A
symbol X is a direct left corner of the nonterminal A if there is a production
A→ Xβ in the grammar. The left-corner relation is the transitive closure of the
direct left-corner relation.

The transformation extends the set of nonterminals with new nonterminals
of the form A−X, where A and X are a nonterminal and a symbol of the original
grammar, respectively. A new nonterminal A−X represents the part of an A that
follows an X. For example, if A ∗=⇒ Bcd

∗=⇒ abcd, then A−B ∗=⇒ cd and A−a ∗=⇒ bcd.
The three transformation rules for the left-corner transform, as formulated

by Johnson [10], are as follows:

∀A ∈ N, a ∈ T : A→ aA−a ∈ P ′ (1)
∀C ∈ N, A→ Xβ ∈ P : C−X → β C−A ∈ P ′ (2)
∀A ∈ N : A−A→ ε ∈ P ′ (3)

The rules are universally quantified over the terminals T , nonterminals N and
productions P of the original grammar. The set P ′ contains the productions of
the transformed grammar; the start symbol remains the same.

Some of the nonterminals and productions generated by these rules are use-
less: they can never occur in a complete derivation of a terminal string from
the start symbol. There are other formulations of the lct which avoid generat-
ing such useless productions; we have chosen this variant because its simplicity
makes it easier to prove properties about the transformation (cf. Section 4).

3.2 Transforming productions

Because rule (2) refers to the left corner of the input production, it is not de-
fined for ε-productions. Therefore, we must encode the precondition that the
transformation can only be applied to non-ε-productions. We begin by defining
a predicate that identifies productions with a nonempty rhs:

isNonEpsilon : Production → Set
isNonEpsilon p = T ((not ◦ null ◦ projrhs) p)

The standard library function T maps boolean values to the corresponding
propositions: the result is either the type > for truth with one inhabitant, or the
type ⊥ for falsity without inhabitants.

The type of non-ε-productions is a dependent pair of a production and a
proof that its rhs is nonempty:

data NonEpsilonProduction : Set where
nε : (p : Production) → { : isNonEpsilon p} →

NonEpsilonProduction

10

We make the proof implicit,5 since we typically only want to refer to it when
dismissing the “impossible case” (empty rhs) in function definitions with a
NonEpsilonProduction argument.

In the lct, the transformed grammar uses a different set of nonterminals than
the original grammar. To encode this in our implementation we require two sep-
arate instantiations of the Grammar module. We define modules O and T , and
inside these modules we instantiate the Grammar module with the appropriate
parameters. This enables us to refer to entities from either grammar with the
prefixes “O” and “T”.6

The set of nonterminals of the transformed grammar is derived from that of
the original grammar by adding nonterminals of the form A−X. This is repre-
sented by the datatype TNonterminal :

data TNonterminal : Set where
n : ONonterminal → TNonterminal
n − : ONonterminal → OSymbol → TNonterminal

With this datatype, the original nonterminal A can be encoded in the trans-
formed grammar as n A, and the new nonterminal A−B as n A − O .sn B .

The semantic types of the transformed nonterminals are a function of the
original semantic types:

T J K : TNonterminal → Set
T J n A K = J A K
T J n A − O .st b K = J A K
T J n A − O .sn B K = J B K→ J A K

The semantic types of the original nonterminals are preserved in the transformed
grammar. To explain the semantic type for a nonterminal A−X, consider the
situation where we have recognized the left cornerX, and continue by recognizing
the remainder of A. If X was a terminal b, we must simply produce a value of
type JAK, but if X was a nonterminal B, we have already got a value of type JBK,
so to produce a result of type JAK we need a function JBK→ JAK.

With the representation of the two grammars in place, we now turn to the
transformation itself. At the top level, we implement the universal quantification
over symbols and productions in the transformation rules with a combination
of concat and map.

lct : ONonEpsilonProductions → TProductions
lct ps = concatMap (λ A → map (rule1 A) ts) ns ++

concatMap (λ C → map (rule2 C) ps) ns ++
map rule3 ns

where ts = terminals ps
ns = nonterminals ps

5 In Agda, implicit arguments must always be named, hence the underscore in the
type signature.

6 For readability, we also define synonyms such as OJ || K = O .J || K.

11

The type of lct specifies the precondition that the productions of the original
grammar must have a nonempty rhs. In the interface of the Grammar module,
we do not require an operation to enumerate all symbols in the sets Terminal
and Nonterminal . Instead we use the functions terminals and nonterminals here,
which traverse the list of productions, collect all terminal or nonterminal symbols
encountered, and remove duplicates. This means that we only quantify over
symbols that are actually used in the grammar.

The functions rule1 and rule3 directly encode the corresponding transfor-
mation rules (1) and (3) from page 10:

rule1 : ONonterminal → Terminal → TProduction
rule1 A a = T .prod (n A) (T .st a :: [T .sn (n A − O .st a)]) id
rule3 : ONonterminal → TProduction
rule3 A = T .prod (n A − O .sn A) [] id

In both cases, the semantics of the constructed production has type JAK→ JAK,
so the corresponding semantic function is the identity.

The function rule2 is more interesting, since it is the only rule that actually
transforms productions of the original grammar.

rule2 : ONonterminal → ONonEpsilonProduction → TProduction
rule2 C (O .nε (O .prod A (X :: β) sem)) =

T .prod (n C − X) (liftSymbols β ++ [T .sn (n C − O .sn A)])
(semtrans C A X β sem)

rule2 (O .nε (O .prod []) { })

Although the notation is slightly cluttered by the various symbol constructors,
it is clear that this function performs a straightforward rearrangement of the
input symbols. The function liftSymbols : OSymbols → TSymbols maps symbols
of the original grammar to the same symbols in the transformed grammar (e. g.,
O .sn A to T .sn (n A)). We will explain semtrans below. The second case is
required to get the function through Agda’s totality checker. We consider the
case that the rhs of the production is empty, but can refute it due to the implicit
proof of non-emptiness contained in the constructor O .nε, using Agda’s notation
for an absurd pattern { }.

3.3 Transforming semantics

One problem still remains to be solved: when transforming a production with
rule2 , how should the associated semantic function be transformed? This task is
performed by the function semtrans. We compute the semantic transformation
incrementally, by folding over the symbols in the rhs of the production, and the
type of the transformation depends on the symbols we fold over. For this, we
use a dependently typed fold for a list of symbols, which is defined as part of
the grammar framework:

12

foldSymbols : {P : Symbols → Set } →
(∀ b {β} → P β → P (st b :: β))→
(∀ B {β} → P β → P (sn B :: β))→
P [] →
(β : Symbols)→ P β

foldSymbols ft fn fe (st b :: β) = ft b (foldSymbols ft fn fe β)
foldSymbols ft fn fe (sn B :: β) = fn B (foldSymbols ft fn fe β)
foldSymbols fe [] = fe

This is a dependently typed generalization of the ordinary foldr for lists; in
addition, we also make a distinction between terminal and nonterminal symbols
at the head of the list. The type P is the result type of the fold, which depends
on the symbols folded over.

To define the transformation of the semantic functions, we use the semantic
types as a guide. A production A→ Bβ is transformed as follows by rule (2):

A→ Bβ −→ C−B → β C−A

The types of the semantic functions must be transformed accordingly:

JBβ||AK −→ JβC−A||C−BK

This can be viewed as a function type mapping the original semantic function to
the transformed semantic function; in other words, it is the type of the semantic
transformation. We encode this type in Agda as:

semtransN : ∀ C A B β →
OJ O .sn B :: β ||A K→
T J liftSymbols β ++ [T .sn (n C − O .sn A)] || n C − O .sn B K

The implementation of semtransN is obtained by constructing a function that
satisfies the given type:

semtransN = O .foldSymbols (λ c f → f)
(λ C f → λ g → f ◦ flip g)
(λ f g → g ◦ f)

The suffix N to semtransN signifies that this transformation applies to a pro-
duction with a nonterminal left corner; the function semtransT for a terminal
left corner is analogous, with slightly different arguments to the fold. The func-
tion semtrans that is used in the definition of rule2 makes the choice between
the two based on the left corner of the input production.

4 Proof of a language-inclusion property

Dependent types can be used to develop correctness proofs for our programs,
without resorting to external proof tools. We illustrate this by proving a lan-
guage-inclusion property for the lct. This property forms part of a correctness

13

proof for our implementation of the transformation; a full proof of correctness
would also establish the converse property (thereby proving language preserva-
tion for the lct), and the absence of left-recursion in the transformed grammar.

4.1 Language inclusion

When applying grammar transformations, we usually require that they preserve
the language that is generated by the grammar. In this section, we show how to
prove that our implementation of the left-corner transform satisfies a language-
inclusion property,

L(G) ⊆ L(G′) , (4)

which states that the language generated by the transformed grammar G′ in-
cludes at least the language of the original grammar G.

The left-corner transform operates on the productions of a grammar by appli-
cation of the transformation rules (1)–(3). The transformation of the productions
leads to a corresponding transformation of the parse trees of the grammar. A
parse tree is essentially a proof that the derived sentence is in the language of
the grammar. To prove property (4), we must show that for every sentence w
in the language of G (as evidenced by a parse tree using the productions of G),
we can construct a parse tree using the productions of G′. By implementing the
parse-tree transformation function we give a constructive proof of the language-
inclusion property.

4.2 Relating parse-tree transformation to grammar transformation

To illustrate the parse-tree transformation, Figure 3a shows the parse tree for
the sentence “1 + 1” in the example grammar, and Figure 3b shows the parse
tree for the same sentence in the transformed grammar. Johnson [10] notes that
the lct emulates a particular parsing strategy called left-corner (lc) parsing,
in the sense that a top-down parser using the transformed grammar behaves
identically to an lc-parser with the original grammar. Left-corner parsing con-
tains aspects of both top-down and bottom-up parsing. We can characterize the
parsing strategies as follows: in top-down parsing, productions are recognized
before their children and their right siblings; in bottom-up parsing, productions
are recognized after their children and their left siblings; and in left-corner pars-
ing, productions are recognized after their left corner, but before their other
children, and before their right siblings. Thus, the parse-tree transformation in-
duced by the lct satisfies the following property: for two parse trees related by
the parse-tree transformation, an lc-traversal of the original tree corresponds to
a top-down traversal of the transformed tree.

In Figure 3, the nodes of the original tree have been labelled in lc-order, and
those of the transformed tree in top-down order. Each node of the transformed
tree that is labelled with a plain number (without a subscript) is derived from
the node in the original tree with the same label, by application of the lct
transformation rule (2). Note that the left-hand side nonterminal of an original

14

(3) E → E B N

(2) E → N

(1) N → 1

(4) B → + (5) N → 1

(a) Original grammar

(11) E → 1 E−1

(1) E−1→ E−N

(2) E−N → E−E

(3) E−E → B N E−E

(41) B → +B−+

(4) B−+→ B−B

(43) B−B → ε

(51) N → 1N−1

(5) N−1→ N−N

(53) N−N → ε

(13) E−E → ε

(b) Transformed grammar

Fig. 3: Original and transformed parse trees.

node is reflected in the right corner of a transformed node. The transformed tree
also contains nodes that are generated by lct transformation rules (1) and (3),
indicated by the subscripts on the labels. These nodes occur at the root and the
lower right corner of all subtrees that do not correspond to a left corner in the
original tree.

The relationships between grammars, parse trees and traversals are depicted
schematically in Figure 4. On the top row, we see the original and transformed
grammars, related by the left-corner transform. The middle row shows parse trees
for the sentence w in the original and transformed grammar. These trees are re-
lated by the parse-tree transformation function, which is also the proof of the
language-inclusion property (4). On the bottom row, we see that an lc-traversal
of the original parse tree, which corresponds to lc-parsing in G, recognizes pro-
ductions in the same order as a top-down traversal of the transformed parse
tree.

4.3 Parse-tree transformation: specification

The parse-tree transformation function performs an lc-traversal of the original
parse tree, transforming each original production with rule (2), and adding pro-
ductions to the transformed tree in top-down order. Each subtree of the original
tree that does not correspond to a left-corner is a new goal for the transforma-
tion. At the root and the lower right corner of these subtrees, productions are
added that are generated by rules (1) and (3), respectively. Finally, we must
show that the transformation of a subtree preserves the derived sentence.

15

G G′

w w

′

lc-parsing in G

Left-corner transform

∗
=⇒G

∗
=⇒G′

Proof of
L(G) ⊆ L(G′)

Left-corner
traversal

Top-down
traversal

Fig. 4: Relationship between grammar transformation and parse-tree transformation.

We now give a precise definition of the parse-tree transformation. This con-
sists of two mutually recursive functions G and T . In the description of these
functions, we use the following notation to concisely represent parse trees with
root A, deriving the sentence w:

A
w

(original parse tree) A
w

′
(transformed parse tree)

Note that we use this notation both to represent the set of parse trees with
root A and sentence w (in the types of T and G), and an inhabitant of that set
(in the definitions of T and G). A parse tree with a specific production A → β
in the root node is written as:

A→ β

B1

v1

Bn

vn

···

(where B1, . . . , Bn are the nonterminals of β)

The transformation functions are defined in Figure 5. Free variables in the
type signatures, such as A and w, are universally quantified. The function G is
the top-level transformation function, which is applied to each new goal. The
type of this function specifies that the sentence of the original tree is preserved
by the transformation.

The recursive transformation of the subtrees is performed by T , which takes
as arguments the current goal nonterminal C, the subtree to be transformed,
and an accumulating parameter, which holds the lower right corner of the tree
that is being constructed. This function satisfies the invariant that the tail v
of the original sentence, concatenated with the sentence w of the tree being
constructed, is the sentence of the result.

16

G : A
w

→ A
w

′

G A
au

=

A→ a A−a

“
T A A

au

A−A

ε

′ ”

T : (C : N) → A
bv

→ C−A
w

′
→ C−b

vw

′

T C

A→ b β

B1
v1

Bn

vn

···

C−A
w

′
=

C−b→ β C−A

“
G B1

v1

” “
G Bn

vn

”
C−A
w

′
···

T C

A→ B β

B

bv

B1
v1

Bn

vn

···

C−A
w

′
=

T C B
bv

C−B → β C−A

“
G B1

v1

” “
G Bn

vn

”
C−A
w

′
···

Fig. 5: Parse-tree transformation functions.

17

As can be seen from Figure 5, the transformation functions satisfy certain
invariants related to roots of parse trees and the sentence derived by them. This
is expressed in the types of T and G by referring not to arbitrary sets of parse
trees, but to sets of parse trees that depend on a particular nonterminal for the
root of the tree and a particular string of terminals for the sentence of the tree.
Thus, the transformation functions are naturally dependently typed.

4.4 Parse-tree transformation: Agda implementation

We now turn to the Agda implementation of the transformation functions that
we defined in pseudocode in Figure 5. Our first task is to create a representa-
tion of the parse-tree types used in the specification. We begin by defining the
synonym OGrammar :

OGrammar = ONonEpsilonProductions

The original grammar is given as a list of productions, which are guaranteed to
be non-ε. We now define the general types of parse trees of the original and the
transformed grammar, that is, types that do not specify the root and sentence
of their inhabitants. To use the parse-tree type of Section 2.3, we must supply
it with a predicate that describes the constraints that apply to each production
in the parse tree. For original parse trees, we require that the production is a
non-ε production, and that it is contained in the original grammar:

OParseTree : OGrammar → Set
OParseTree G = O .ParseTree (λ p → Σ (O .isNonEpsilon p)

(λ pnε→ O .nε p {pnε} ∈ G))

Note that the parse tree itself contains “plain” productions; to express the re-
quirement that they are contained in the grammar, we must combine them with
their non-ε proofs to construct values of type NonEpsilonProduction.

For transformed parse trees, we only require that the productions are con-
tained in the left-corner transform of the original grammar.

TParseTree : OGrammar → Set
TParseTree G = T .ParseTree (λ p → p ∈ lct G)

From the general parse-tree types OParseTree and TParseTree we can create
the specific parse-tree types that are used in the types of the transformation
functions. This is done by taking the dependent pair of a parse tree with a pair
of proofs about its root and sentence. For original parse trees we define:

OPT : OGrammar → ONonterminal → Terminals → Set
OPT G A w = Σ (OParseTree G) (λ opt → O .projroot opt ≡ A

× O .sentence opt ≡ w)

The type OPT G A w is the Agda representation of the type
w
A . The type

TPT is defined in the same way.

18

Using the types OPT and TPT , it is straightforward to translate the types
of the transformation functions into Agda. For G we get:

transG : ∀ {G A w } → OPT G A w → TPT G (n A) w

And the type of T becomes:

transT : ∀ {G A b v w } →
(C : ONonterminal)→
C ∈ nonterminals G →
OPT G A (b :: v)→
TPT G (n C − O .sn A) w →
TPT G (n C − O .st b) (v ++ w)

In the translation to Agda, we have added an additional agument: the condi-
tion C ∈ nonterminals G , which states that the current goal nonterminal C is
actually used in one of the productions of the grammar. In Figure 5, this was
left implicit; in Agda, we need this condition to prove that the productions of
the transformed tree really exist in the transformed grammar.

The implementations of transG and transT are also straightforward transla-
tions of the pseudocode of Figure 5. The resulting code does, however, require
many small helper proofs in order to prove its type correctness. This clutters the
structure of the transformation somewhat, compared to the pseudocode.

By implementing transG , we have created a machine-checkable proof that
our implementation of the lct satisfies the language-inclusion property (4).

5 Related work

Baars et al. [11] implement a left-corner transformation of typed grammars in
Haskell. To guarantee that the types of associated semantic functions are pre-
served across the transformation, they make use of various extensions to Haskell’s
type system, such as generalized algebraic datatypes for maintaining several in-
variants and nonstrict evaluation at the type level for wrapping the transforma-
tion in an arrow [12]. Inspired by Pasǎlić and Linger [13], their implementation,
which is built on top of a general-purpose library for typed transformations of
typed syntax [14], uses what are essentially De Bruijn indices for representing
nonterminal symbols. At the expense of some additional complexity, this repre-
sentation allows for a uniform representation of nonterminals across the trans-
formation. Our approach, at the other hand, requires a dedicated representation
(TNonterminal) for the nonterminals used in the transformed grammar and a
corresponding representation for its productions (TProduction). In principle, our
implementation could be adapted to use a uniform representation of nonterminal
symbols across the transformation as well, but doing so would make it consid-
erably more involved to state and prove properties of our transformation. Baars
et al., limited by the restrictions of Haskell’s type system, do not state or prove
any properties of their implementation other than the preservation of semantic
types.

19

Danielsson and Norell present a library [15] of total parser combinators in
Agda. Type-correct parsers in this library are guaranteed not to be left-recursive.
It would be interesting to investigate if we could generate a parser for our lct-
transformed grammars using these combinators. A more recent version of the
library by Danielsson [16] can actually deal with many left-recursive grammars,
by controlling the grammar traversal using a mix of induction and co-induction.

6 Conclusions

We have presented a framework for the representation of grammars, together
with their semantics, in Agda. Dependent types make it possible to specify pre-
cisely how the type of the semantic functions is determined by the shape of
the productions. We can generate parsers for the grammars expressed in our
framework with the help of a parser-combinator library.

As an example of the use of our framework, we have shown how to implement
the left-corner transform, a transformation that removes left recursion from a
grammar. This transformation consists not only of relatively simple manipula-
tions of grammar symbols, but also requires a corresponding adaptation of the
semantic functions. Fortunately, we can use the types to guide the implemen-
tation: by treating the semantic types as a specification of the desired trans-
formation, the problem is reduced to a search for a function of the appropriate
type.

Dependent types play an important role in the development of correctness
proofs for our programs. We illustrate this by proving a language-inclusion prop-
erty for our implementation of the lct, which states that the transformed gram-
mar derives at least the language of the original grammar. From the transfor-
mation rules of the lct, it is not immediately obvious how the parse trees of
the original and transformed grammars are related. A key insight in the proof,
due to Johnson [10], is the realization that the grammar transformation effec-
tively simulates a left-corner traversal of the original parse tree. This leads us
to a specification of the parse-tree transformation in pseudocode, which involves
several invariants on the roots and derived sentences of the parse trees. Those
invariants are expressed most naturally using dependent types.

The Agda implementation of the proof is a straightforward translation of the
pseudocode specification. As we have shown, the language-inclusion property can
be represented elegantly in Agda as a type. The proof of this property, which
is a parse-tree transformation function satisfying the aforementioned type, also
follows directly from the pseudocode. However, to show that this function sat-
isfies the specified type, we have to prove many small helper properties, which
clutters the main proof considerably. Although Agda’s interactive mode proved
helpful in getting these details of the proof right, we speculate that the availabil-
ity of an extensible tactic language, much as has been available in Coq for many
years [17], would even further streamline the construction of proof objects.

During the development of the proof of the language-inclusion property we
were confronted with inefficiencies in the current implementation of Agda (ver-

20

sion 2.2.4). In order for the memory footprint of the typechecker to fit within the
physical memory of the machine, we were forced to factor the proof – sometimes
unnaturally – into several submodules. Even with this subdivision, the stand-
alone typechecker takes about 8 minutes to check the proof on our hardware,7

limiting the pace of development.
The framework we have presented in this paper can represent any context-

free grammar, but when encoding the grammar we are limited to using plain
bnf notation. In contrast, parser combinators are far more expressive than plain
bnf, offering constructs such as repetition, optional phrases, and more. One of
the key advantages of parser combinators is that they allow us to capture re-
curring patterns in a grammar by defining custom combinators. Our main focus
in extending the present work is to develop a library of “grammar combina-
tors”. We envisage a combinator library with an interface similar to that of the
parser combinators, which constructs an abstract representation of a grammar
in our framework. This representation can then be analyzed, transformed, and
ultimately turned into a parsing function.

Another area we are investigating is the development of a library of gram-
mar transformations, such as removal of ε-productions, removal of unreachable
productions, or left-factoring.

Currently, the generation of a parser for a grammar makes use of top-down,
backtracking parser combinators, which leads to very inefficient parsers. How-
ever, from our grammar representation, we can generate many kinds of parsers
with various parsing strategies. In particular, our grammar representation is well
suited to the kind of global grammar analysis normally performed by standalone
parser generators, so we intend to explore the possibility of generating efficient,
deterministic bottom-up parsers for our grammars.

Finally, we wish to prove more properties about grammar transformations.
For instance, we want to expand the proof of the language-inclusion property
into a full correctness proof of our implementation of the lct. We hope that
by doing more proofs, recurring proof patterns for proofs over grammars will
emerge that we can then include in our general framework.

Acknowledgements. This work was partly supported by the Netherlands Or-
ganisation for Scientific Research through its project on “Scriptable Compilers”
(612.063.406) and carried out while the second author was employed at Utrecht
University. The authors thank the anonymous reviewers for their helpful remarks
and constructive suggestions.

References

1. Hutton, G.: Higher-order functions for parsing. Journal of Functional Programming
2 (1992) 323–343

2. Swierstra, S.D., Duponcheel, L.: Deterministic, error-correcting combinator
parsers. In Launchbury, J., Meijer, E., Sheard, T., eds.: Advanced Functional Pro-
gramming, Second International School, Olympia, WA, USA, August 26–30, 1996,

7 Using a 2 GHz Intel Core 2 Duo CPU (32-bit) and 2 GB RAM.

21

Tutorial Text. Volume 1129 of Lecture Notes in Computer Science., Springer-Verlag
(1996) 184–207

3. Swierstra, S.D.: Combinator parsing: A short tutorial. In Bove, A., Soares Bar-
bosa, L., Pardo, A., Sousa Pinto, J., eds.: Language Engineering and Rigorous
Software Development, International LerNet ALFA Summer School 2008, Piriapo-
lis, Uruguay, February 24–March 1, 2008, Revised Tutorial Lectures. Volume 5520
of Lecture Notes in Computer Science., Springer-Verlag (2009) 252–300

4. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinator for the real
world. Technical Report UU-CS-2001-035, Utrecht University (2001)

5. Norell, U.: Dependently typed programming in Agda. In: Advanced Functional
Programming: 6th International School, AFP 2008, Heijen, The Netherlands, May
2008, Revised Lectures. Volume 5832/2009 of Lecture Notes in Computer Science.,
Springer-Verlag (2009) 230–266

6. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology (2007)

7. Brink, K., Holdermans, S., Löh, A.: Dependently typed grammars (2010) Agda
code, available from http://www.cs.uu.nl/~andres/DTG/.

8. Fokker, J.: Functional parsers. In Jeuring, J., Meijer, E., eds.: Advanced Functional
Programming. Volume 925 of Lecture Notes in Computer Science., Springer (1995)
1–23

9. Rosenkrantz, D.J., Lewis, P.M.: Deterministic left corner parsing. In: Conference
Record of 1970 Eleventh Annual Symposium on Switching and Automata Theory,
IEEE (1970) 139–152

10. Johnson, M.: Finite-state approximation of constraint-based grammars using left-
corner grammar transforms. In: COLING-ACL. (1998) 619–623

11. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed grammars:
The left corner transform (2010) To appear in the proceedings of the 9th Workshop
on Language Descriptions, Tools and Applications (LDTA 2009), York, England,
29 March 2009.

12. Hughes, J.: Generalising monads to arrows. Science of Computer Programming
37 (2000) 67–111

13. Pasǎlić, E., Linger, N.: Meta-programming with typed object-language represen-
tations. In Karsai, G., Visser, E., eds.: Generative Programming and Component
Engineering: Third International Conference, GPCE 2004, Vancouver, Canada,
October 24–28, 2004, Proceedings. Volume 3286 of Lecture Notes in Computer
Science., Springer-Verlag (2004) 136–167

14. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed abstract
syntax. In Kennedy, A., Ahmed, A., eds.: Proceedings of TLDI’09: 2009 ACM
SIGPLAN International Workshop on Types in Languages Design and Implemen-
tation, Savannah, GA, USA, January 24, 2009, ACM Press (2009) 15–26

15. Danielsson, N.A., Norell, U.: Structurally recursive descent parsing.
Draft, available from http://www.cs.nott.ac.uk/~nad/publications/

danielsson-norell-parser-combinators.html (2008)
16. Danielsson, N.A.: Total parser combinators. Draft, available from http://www.cs.

nott.ac.uk/~nad/publications/danielsson-parser-combinators.html (2009)
17. Delahaye, D.: A tactic language for the system Coq. In Parigot, M., Voronkov, A.,

eds.: Logic for Programming and Automated Reasoning, 7th International Con-
ference, LPAR 2000, Reunion Island, France, November 11–12, 2000, Proceedings.
Volume 1955 of Lecture Notes in Computer Science., Springer-Verlag (2000) 85–95

22

