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Abstract
An important problem in the context of embedded domain specific
languages (EDSLs) is how to provide easy to use, yet expressive
representations of abstract syntax. So far providing user-friendly
encodings of abstract syntax that enable operations that observe or
preserve sharing and recursion has proved to be quite elusive.

This paper argues that abstract syntax graphs (ASGs) are the
answer. An ASG is a data structure that represents the (abstract)
syntax of a formal language. We use a functional representation
of ASGs based on structured graphs. Unlike abstract syntax trees,
our structured graph ASG representation uses recursive binders, en-
coded with parametric higher-order abstract syntax, to represent
sharing and recursion explicitly. The resulting representation en-
ables the user to easily define operations that observe and preserve
sharing and recursion.

We show how to adapt the techniques of structured graphs to
well-typed ASGs. This is especially useful for EDSLs, which often
reuse the type system of the host language. We also show a class-
based encoding of (well-typed) ASGs that enables extensible and
modular well-typed EDSLs while allowing the manipulation of
sharing and cycles.

1. Introduction
A domain-specific language (DSL) is a programming language
targeted at a particular problem domain. DSLs offer a vocabulary,
language constructs and a semantics crafted for that domain.

1.1 External and internal DSLs
Domain specific languages can be implemented in various ways.
A common approach, called external DSL, is to implement a DSL
in the same way as a general-purpose language, including all the
usual components in the tool chain: a grammar, a parser, a compiler,
syntactic and semantic checks, and various other components. This
approach offers a lot of freedom and flexibility in the design and use
of the DSL, but it has high development and maintenance costs.

A different option is an internal DSL. Typically internal DSLs
are implemented as embedded DSLs (EDSLs) [20], i.e., by reusing
various elements of a (general-purpose) host language (such as
the syntax, type-checker, or binding constructs). This approach
is in some ways less flexible, but it has the important advantage
of greatly reducing the cost of the implementation. Furthermore

[copyright notice will appear here]

integration with the host language comes for free and mixing the
DSL with the host language or other internal DSLs is easy.

1.2 Shallow and deep embeddings
There are multiple ways to represent the syntax of the DSL in the
host language. It is important that constructing and using expres-
sions in the DSL is syntactically lightweight and easy, because
programmers are supposed to work with an internal DSL directly
within the host language. As such the overhead of using the DSL
should be as low as possible.

Representations for DSLs are typically positioned between two
extremes: shallow and deep embeddings. Shallow embeddings pro-
vide a very thin layer over the host language and are often nothing
but a regular library providing an API with the DSL vocabulary, and
implementing the constructs of the DSL directly by their seman-
tics. This means that there is no support for inspecting the syntax
of the DSL. As a result, syntactic manipulations (which are often
important for optimizations) are difficult to realize. Deep embed-
dings solve this problem by providing an explicit abstract syntax
for the DSL – usually via an abstract syntax tree (AST). The se-
mantics of the DSL is given by an interpretation function over the
AST, and manipulations on the syntax can be performed prior to
interpretation.

1.3 Sharing and recursion
Unfortunately, naively representing the abstract syntax of an inter-
nal DSL as an AST suffers from problems of its own: some DSL
programs exploit sharing or recursion, and transformations and op-
timizations of such programs would require to observe and preserve
sharing and recursion in order to be feasible. A plain AST often
does not contain that information.

Adding an explicit representation of sharing and recursion to
an AST is no trivial problem: if we start labeling and referencing
nodes, we suddenly need to keep track of labels and binding. This
requires us to work with approaches to labeling such as names and
substitutions or de Bruijn indices [10]. Suddenly, we have to deal
with potential problems such as avoiding name capturing in substi-
tutions or preventing dangling references. Alternatively, we could
use pointer or reference equality to discover cycles and sharing.
However, comparing pointers or references is not compatible with
pure functional programming, since this type of operation breaks
referential transparency. In a language such as Haskell, we would
then be forced to use monadic interfaces, which complicate the use
of the DSL and make reasoning more difficult. In summary, both
options – ASTs with names, or reference equality – usually make
EDSLs heavier and more difficult to use.

1.4 Abstract syntax graphs
This paper proposes an abstract syntax graph (ASG) representa-
tion as another way to express observable sharing and recursion in
DSLs. The ASG representation discussed in this paper is a form of
structured graph [29]. Structured graphs have been recently pro-
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posed as a purely functional representation of graphs. They inter-
nalize the information about sharing and cycles by using recursive
binders. Binders are encoded using parameteric higher-order ab-
stract syntax (PHOAS) [7]. In contrast to other approaches to ob-
servable sharing and recursion based on binders [13, 15, 17], the
PHOAS-based representation of binders has the advantage of be-
ing lightweight, safe, and easy to use.

In this paper, we demonstrate the use of ASGs in order to
implement internal EDSLs using Haskell.

1.5 Structure of the paper
In Section 2, we reiterate the trade-offs between shallow and deep
embeddings using the example of a small expression DSL to be
implemented in Haskell. We then explain how ASGs can be imple-
mented in Haskell, how they solve the sharing problem, and how
the resulting representation can be used.

In Section 3, we extend the ASG encoding by studying several
common forms of binding: next to simple non-recursive let-sharing,
we discuss recursion and the simultaneous binding of multiple,
potentially mutually recursive terms.

Haskell is a favored implementation language for internal DSLs
because of its advanced type system. The type system is often
versatile enough to rule out illegal guest-language programs com-
pletely. Increasingly often, Haskell’s type system is even employed
in the internal representation of the DSL, having the datatype rep-
resenting the abstract syntax be a datatype of well-typed terms. In
Section 5, we show that ASGs can be combined with the use of
well-typed abstract syntax to form well-typed ASGs. Encoding mu-
tually recursive bindings in the generalized setting relies on typed
lists, which we therefore introduce before, in Section 4.

In Section 6, we address modularity, another common concern
with internal DSLs. We show how Haskell type classes can be used
with ASGs to provide a reusable and extensible DSL infrastructure.

Sections 7 and 8 discuss related work and conclusions.

1.6 Summary of contributions
The main contributions of this paper1 are:

ASGs for DSLs We propose using a functional representation of
ASGs, based on structured graphs, for EDSLs. This representation
is lightweight, purely functional, easy to use and it expresses shar-
ing and recursion explicitly. ASGs therefore allow the definition of
functions that preserve and observe sharing and recursion.

Typed ASGs We show how to represent deeply embedded well-
typed terms with ASGs. Well-typed terms allow DSL designers to
reuse (parts of) the type system of the host language for the type
system of the EDSL.

Previous work on structured graphs [29] already develops tech-
niques for representing untyped terms. However, our discussion of
well-typed ASGs here is new. Also, the previous treatment of mu-
tually recursive bindings could not enforce certain size invariants
that we can enforce here for well-typed ASGs by using typed lists.

Extensible and Modular Encodings of ASGs We present an al-
ternative encoding of ASGs based on type classes. This encoding
stands somewhere in between shallow and deep embeddings, and
it has the advantage that resulting DSLs are modular and easier to
extend with new features.

2. Sharing in internal DSLs
In this section, we use a small example language to demonstrate
the differences between shallow and deep embeddings as well as
the issues with representing sharing.

1 The code for this paper is available online at http://ropas.snu.ac.kr/
~bruno/papers/ASGs.zip.

In order to keep the examples as small as possible, we use
an internal DSL with just two constructs: the constant one, and a
binary addition operator. The Haskell interface of our DSL is:

data Expr -- abstract
one :: Expr
(⊕) :: Expr→ Expr→ Expr

The primary semantics we are interested on is evaluation:

eval :: Expr→ Int

We are now going to contrast a shallow embedding with a deep
embedding for this language.

2.1 Shallow embedding
A shallow embedding of the expression language is:

type Expr = Int

one = 1
(⊕) = (+)

eval = id

We use the semantic domain (here: the type Int) as the represen-
tation of the expression type. Building a term in the expression
language evaluates it automatically. The evaluation function eval
is then just the identity function.

The shallow approach is appealing because it is so simple. Con-
structing terms in the DSL is as easy as constructing Haskell terms.
We even inherit many features from the host-language Haskell. For
example, we can use a Haskell function to generate a term in our
DSL, as shown on the left hand side of Figure 1.

The term treeI n describes a binary tree of additions, with occur-
rences of one in the leaves. The function treeI is recursive, and it
makes use of sharing via let. Both recursion and sharing are prop-
erties we do not have available in the interface of our expression
DSL, yet they are available to us via the embedding into Haskell.

The use of sharing is actually essential here for efficient evalu-
ation of the term. Without sharing, treeI n would contain exponen-
tially many additions and constants in n. However, by using shar-
ing, the term is internally represented as a graph of just linear size.
The identifier shared is bound to an Expr represented as an Int, and
even though shared is being used twice, it is being evaluated only
once. The evaluation of eval (treeI 2) is sketched on the left hand
side of Figure 2. Note how 1 + 1 is evaluated only once, and its
result (2) is shared.

However, shallow embeddings come at a price. We are commit-
ting to a specific semantics – in this case, evaluation. Often, that is
too limited in practice. We may want to do other things with ex-
pressions: for example, show the original term via a function

text :: Expr→ String

or transform the expression into a different (perhaps optimized)
form, or translate the expression into a different language with a
different set of constructs available. With a shallow embedding, we
are out of luck. Our implementation picks one semantics and once
we construct a term, we interpret the expression according to that
semantics, losing the original structure of the expression.

2.2 Deep embedding
A deep embedding solves this particular problem. For the expres-
sion language, we can obtain such a deep embedding by defining

data Expr = One | Add Expr Expr

one = One
(⊕) = Add
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treeI :: Int→ Expr
treeI 0 = one
treeI n = let shared = treeI (n− 1) in shared⊕ shared

treeE :: Int→ Expr
treeE 0 = one
treeE n = let_ (treeE (n− 1)) (λshared→ shared⊕ shared)

Figure 1. Contrasting building a massively shared tree either using Haskell’s implicit sharing (left) or explicit sharing in our DSL (right)

eval (treeI 2)
= let shared = treeI (2− 1) in shared + shared
= let shared = let shared′ = treeI (1− 1) in shared′ + shared′

in shared + shared
= let shared = let shared′ = 1 in shared′ + shared′

in shared + shared
= let shared = 1 + 1 in shared + shared
= let shared = 2 in shared + shared
= 2 + 2
= 4

eval (treeI 2)
= eval (let shared = treeI (2− 1) in Add shared shared)
= let shared = treeI (2− 1) in eval shared + eval shared
= let shared = let shared′ = treeI (1− 1) in Add shared′ shared′

in eval shared + eval shared
= let shared′ = treeI (1− 1)

in (eval shared′ + eval shared′) + (eval shared′ + eval shared′)
= let shared′ = One

in (eval shared′ + eval shared′) + (eval shared′ + eval shared′)
= (1 + 1) + (1 + 1)
= 2 + 2
= 4

Figure 2. Contrasting evaluation of eval (treeI 2) using both the shallow (left) and deep (right) embedding

eval One = 1
eval (Add e1 e2) = eval e1 + eval e2

We now choose to represent the language constructs by their ab-
stract syntax. A value of type Expr corresponds to the abstract syn-
tax tree of a term in our DSL. We thus retain the structure of the
terms we construct and can interpret them in various ways. We can,
for example, evaluate it as shown in the definition of eval above,
but we can also show it in textual form:

text :: Expr→ String
text One = "1"
text (Add e1 e2) = "("++ text e1 ++" + "++ text e2 ++")"

In a similar way, we could define additional interpretation functions
such as an optimizer or a translator to a different language. Typi-
cally, the interpretation functions are folds (also known as catamor-
phisms), i.e., functions that traverse the structure of the underlying
input datatype (here Expr) closely and recurse exactly where we
encounter a recursive subterm in the datatype definition.

However, the greater flexibility comes at a price. Consider treeI
again, defined exactly as before (that is, the treeI definition in the
left side of Figure 1). The identifier shared now is a term of the
datatype Expr, no longer of type Int. If we evaluate the term treeI n
using eval, we traverse the structure of the Expr, thereby destroying
the sharing. The term will take exponentially long to evaluate (or
to show, or to transform). The evaluation of eval (treeI 2) in the
deep setting is sketched on the right side of Figure 2. Note how the
pattern matching in eval destroys the sharing introduced by let, and
how 1 + 1 is evaluated twice.

Haskell’s let still allows us to construct implicitly shared terms
of type Expr, but this sharing is not observable and is also quite
fragile. Traversing such an implicitly shared term using any inter-
pretation function will destroy all sharing.

2.3 Explicit sharing
The solution can only be to make sharing explicit in the embedded
language. This will enable us to observe and preserve the sharing
that we wish to have in a term, and to do so in a robust way.

It is quite clear that we need to add a let-like construct, but there
is quite some design flexibility in the detail. We would like to avoid
having to deal with names, binding and substitution ourselves, as

this is tedious and error-prone, and would make the DSL much
more tricky to use or at least to implement.

One promising approach to model binding in the embedded
language is higher-order abstract syntax (HOAS) [32]. With HOAS
the function space of the implementation language Haskell is used
in order to express a shared term in the embedded language:

data Expr = One | Add Expr Expr | Let Expr (Expr→ Expr)

We no longer have to use Haskell’s let in order to express sharing in
the embedded language. Next to one and (⊕) (that can be defined
as before) we have to augment the interface of our language with
an explicit sharing construct:

let_ :: Expr→ (Expr→ Expr)→ Expr
let_ = Let

We have to adapt the construction of shared terms to use this
explicit sharing construct. The resulting modification of function
treeI, called treeE, is shown on the right side of Figure 1.

However there is a problem: How do we extend the evaluator to
cover the case for Let? Here is an attempt:

eval (Let e1 e2) = let shared = eval e1 in eval (e2 (. . . shared))

We would like to feed the evaluated shared shared expression to
e2, but it has the wrong type! The body of the Let expects an Expr,
but we have an Int. At the position of . . ., we need a function that
can quote the interpreted term back into the original language [26].
Alternatively, we have to add another constructor to Expr, because
the existing constructors are not really expressive enough (we have
One, but not arbitrary integer literals). Note that other interpretation
functions such as text would need other quotation functions.

But before we delve too deep into this issue, we should point
out another problem with higher-order abstract syntax: the space
of type Expr→ Expr is too large. In order to express binding faith-
fully, we want the syntactic shape of the resulting expression to
be independent of the expression being shared. However, a Haskell
function of Expr→ Expr allows us to plug in functions that case-
analyze the incoming value and return different expressions de-
pending on the outcome of that analysis.

2.4 Abstract syntax graphs
Making sharing explicit means that the abstract syntax representa-
tion becomes a graph rather than a tree. Although our effort to use
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HOAS to model ASGs has some problems, Oliveira and Cook [29]
have shown a functional representation of graphs that solves these
problems. The idea is to use parametric higher-order abstract syn-
tax (PHOAS) [7] instead of HOAS to model binders.

data Expr a = One | Add (Expr a) (Expr a)
| Var a | Let (Expr a) (a→ Expr a)

With PHOAS the whole expression datatype is now parameterized
by the type of shared expressions a. We have two new constructors
compared to our original type, one for variables that embeds a value
of type a in Expr, and one for Let. The body of the Let now receives
a variable of type a rather than a value of type Expr.

If we now require expressions in our language to make no
assumption about the variables, i.e., to be polymorphic in a, then
we cannot analyze the shared expression. Furthermore, Var serves
as a generic way to quote intermediate results of interpretation
functions. We can thus make the following definition for closed
expressions, i.e., expressions with no free variables:

type ClosedExpr = ∀a.Expr a

We use ClosedExpr to explicitly refer to closed terms in our DSL
and Expr a to construct terms or writing interpreter functions.

We define one and (⊕) as before:

one = One
(⊕) = Add

In addition, we define a function let_ that wraps Let:

let_ :: Expr a→ (Expr a→ Expr a)→ Expr a
let_ e1 e2 = Let e1 (λx→ e2 (Var x))

The PHOAS underpinning guarantees that we cannot do anything
with the argument we obtain in the body of the Let but to use it as
a variable. But having to invoke Var explicitly at every use site is
somewhat tedious – the wrapper performs this work for us.

With these definitions in place, we can define our explicitly
shared treeE function again. It looks just like the definition on the
right side of Figure 1, but its type becomes Int→ ClosedExpr. We
now have the choice whether to use Haskell’s host-language let
construct while doing meta-programming by writing a term like on
the left side of Figure 1, or if we explicitly want to express sharing
in the embedded language using let_ like on the right side.

2.5 Preserving sharing
The evaluator can now be defined as follows:

eval :: Expr Int→ Int
eval One = 1
eval (Add e1 e2) = eval e1 + eval e2
eval (Var n) = n
eval (Let e1 e2) = eval (e2 (eval e1))

The interpreter expects an Expr Int – it thus assumes that variables
are of type integer for the purpose of evaluating an expression.
However, a ClosedExpr is polymorphic in the variable type, so it
will naturally be accepted by eval. In the Var case, we find an
integer and can return it. In the Let case, we have to provide an
integer for the value of the bound variable: we pass eval e1. Note
that this achieves sharing, because lambda-bound terms in Haskell
are automatically shared. Therefore calling eval (treeE 30) now will
return the result 1073741824 almost immediately.

2.6 Observing sharing
Furthermore, it is easy to write other interpretation functions for
expressions. Here is a function that computes a textual representa-
tion of the given term. Here, rather than preserving the sharing, we
are interested in observing it:

text :: ClosedExpr→ String
text e = go e 0

where
go :: Expr String→ Int→ String
go One = "1"
go (Add e1 e2) c =
"("++go e1 c++" + "++go e2 c++")"

go (Var x) = x
go (Let e1 e2) c =
"(let "++ v++" = "++go e1 (c + 1)++
" in "++go (e2 v) (c + 1)++")"
where v = "v"++ show c

In text, we internally use an interpretation of type Int → String,
maintaining a counter. In the case for Let, we actually print
a let-construct rather than unfolding the expression. Evaluating
text (treeE 2) yields

"(let v0 = (let v1 = 1 in (v1 + v1)) in (v0 + v0))"

2.7 Inlining
As a final example, let us look at a transformation that removes
explicit sharing again, effectively inlining all let-bound variables:

inline :: Expr (Expr a)→ Expr a
inline One = One
inline (Add e1 e2) = Add (inline e1) (inline e2)
inline (Var x) = x
inline (Let e1 e2) = inline (e2 (inline e1))

This operation produces the original expression, but unfolds Let
constructs. For the purposes of inline, variables are themselves
expressions. For text (inline (treeE 2)), we obtain

"((1 + 1) + (1 + 1))"

again, and eval (inline (treeE 30)) takes forever to compute.

2.8 Summary
We have shown that there are situations where we need to observe
or preserve sharing in an embedded DSL. Preserving sharing can
be necessary for performance reasons (as in the treeE example),
but often, it is simply desirable that operations can inspect shared
terms and treat them in a particular way (as in the text example).

PHOAS offers a safe yet convenient way to make sharing ex-
plicit and encode ASGs. The user can reuse Haskell’s own scoping
rules and does not have to worry about managing names. Differ-
ently from classic HOAS encoding terms that perform case analysis
on bound variables is forbidden.

In the next section, we will see that this approach scales to
other language constructs that involve binding, such as recursive
and mutually recursive bindings.

3. (Mutual) recursion
In the previous section, we have shown how a functional represen-
tation of ASGs can be used to express sharing in an internal DSL
in a convenient fashion. In this section, we are going to look at
this solution in a bit more detail, and demonstrate that it extends to
several variations of the theme that occur in practice. In particular,
following Oliveira and Cook [29], we will see that this solution can
deal with recursive and mutually recursive bindings as well.

To this end, we extend our example language with a few new
constructs. For now, let us move from the constant “one” to allow-
ing arbitrary integer literals, add a construct for checking if a term
is equal to “zero”, and add lambdas and application:

type ClosedExpr = ∀a.Expr a
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data Expr a = Lit Int | Add (Expr a) (Expr a)
| IfZero (Expr a) (Expr a) (Expr a)
| Var a | Let (Expr a) (a→ Expr a)
| Lam (a→ Expr a) | App (Expr a) (Expr a)

The constructor Lit takes an arbitrary integer literal. Addition is
exactly as before. In IfZero, we take a condition, a then-part and an
else-part. Variables (Var) and Let are unchanged. A lambda (Lam) is
a binding construct. It therefore takes a function of type a→ Expr a
in the same way as the body of Let. Application (App) takes a
function and an argument.

We define a few “smart constructors” to facilitate constructing
terms again:

(⊕) = Add
(�) = App
let_ e1 e2 = Let e1 (λx→ e2 (Var x))
lam_ e = Lam (λx→ e (Var x))

3.1 Evaluation
Let us look at how to extend the evaluator. We no longer have the
luxury that all terms of our embedded language evaluate to integers.
Instead, terms of our language now have a type τ where the type
language is as follows:

τ ::= Int | τ → τ

We have some flexibility encoding the type system when we embed
the language: we can encode the types of the terms dynamically,
and allow the language to represent ill-typed terms that will fail at
run-time; or we can use Haskell’s type system to enforce that terms
in the language must be well-typed. Both settings have some merit.
We will therefore look at the dynamic approach here and deal with
the static encoding of the types later, in Section 5.

The result of evaluation is now a tagged value:

data Value = N Int | F (Value→ Value)

Functions are represented as Haskell functions in this simple setting
– we might move to a representation using an explicit closure using
an environment in a larger setting. The evaluator changes slightly
as a consequence, and now looks as follows:

eval :: Expr Value→ Value
eval (Lit i) = N i
eval (Add e1 e2) = add (eval e1) (eval e2)
eval (IfZero e1 e2 e3) = ifZero (eval e1) (eval e2) (eval e3)
eval (Var x) = x
eval (Let e1 e2) = eval (e2 (eval e1))
eval (Lam e) = F (λv→ eval (e v))
eval (App e1 e2) = app (eval e1) (eval e2)

We now have to tag values whenever we produce them, such as in
the cases for One and Lam. For operations such as plus, ifZero and
app we write wrapper functions that check (at run time) whether
the arguments have the correct types and throw an error if not:

add (N m) (N n) = N (m + n)
ifZero (N n) v1 v2 = if n = = 0 then v1 else v2
app (F f) v = f v

Of course, we could also define a monadic evaluator that would be
a total function and return Maybe Value instead of Value.

Here is a small example:

example =
let_ (lam_ (λx→ x⊕Lit (− 1))) (λdec→
let_ (lam_ (λ f→ lam_ (λx→

f� (f� x)))) (λ twice→
(twice� twice� dec� Lit 10)))

This expression encodes the term

let dec x = x− 1
twice f x = f (f x)

in twice twice dec 10

Note that the two uses of twice are at different types. Evaluating the
expression eval example yields N 6 as expected.

3.2 Recursion
Recursion is simple to add, by introducing an additional constructor
that represents fixed points:

data Expr a = . . . -- as before
| Mu (a→ Expr a)

This binding construct is very similar to Lam. Both constructs
introduce a bound variable that scopes over the entire body of the
expression.

The idea is that using Mu, we can encode a recursive function
such as multiplication (in terms of addition) as follows:

mu_ e = Mu (λx→ e (Var x))

mul :: ClosedExpr
mul = lam_ (λm→mu_ (λ rec→ lam_ (λn→

IfZero n (Lit 0) (m⊕ (rec� (n⊕Lit (− 1)))))))

The evaluator must of course be adapted as well:

eval :: ClosedExpr→ Value
eval . . . = . . . -- as before
eval (Mu e) = fix (λv→ eval (e v))

The new case maps Mu to Haskell recursion using the fix function:

fix :: (a→ a)→ a
fix f = let r = f (fix f) in r

Using the let here for the result introduces additional sharing.
As we did in Section 2.4, we can also write other semantic func-

tions on our DSL such as a function text to display the expres-
sion. Semantic functions can now observe and preserve recursion
as needed.

It is also possible to define a recursive let-construct in terms of
Let and Mu:

letrec :: (Expr a→ Expr a)→ (Expr a→ Expr a)→ Expr a
letrec e1 e2 = Let (Mu (λx→ e1 (Var x))) (λx→ e2 (Var x))

3.3 Mutually recursive definitions
The Mu construct is sufficient for expressing simple recursion, but
we cannot easily express the definition of several mutually recur-
sive bindings. For languages with an expressive internal structure
we might be able to encode mutual recursion in terms of simple
recursion within the DSL, but we want our techniques to be widely
applicable and not impose strong requirements on the DSLs.

When defining mutually recursive definitions we need to bind
several variables at once (one for each mutually recursive defini-
tion).

As an example, consider the following Haskell term:

let dec x = x− 1
even x t e = if x = = 0 then t else odd (dec x) t e
odd x t e = if x = = 0 then e else even (dec x) t e

in even 4 1 0

The function even takes a number and two continuations. If the
number is even, the first continuation is returned, if it is odd,
then the second continuation is returned instead. The given call
returns 1, because 4 is even.
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The functions even and odd are mutually recursive, and both
depend on dec. This kind of mutually recursive binding is com-
monplace in a language like Haskell. Can we extend our internal
DSL to simulate such a construct?

The new constructor we add is called LetRec:

data Expr a = . . . -- as before
| LetRec ([a]→ [Expr a]) ([a]→ Expr a)

We have a list of declarations now. Each of the declarations can
refer to each of the others. So all declarations are parameterized by
a list of inputs. The body also can refer to each of the bindings,
therefore it is parameterized over the same list. The type system
cannot express the intuition that all three lists that occur in the type
above are supposed to have the same length. We will be able to
make this precise in Section 5.

As before, we define a wrapper that applies Var to all the vari-
ables:

letrec_ :: ([Expr a]→ [Expr a])→
([Expr a]→ Expr a)→ Expr a

letrec_ es e = LetRec (λxs→ es (map Var xs))
(λxs→ e (map Var xs))

Now we can define our example term as follows:

evenOdd = letrec_ (λ∼[dec,even,odd]→
[ lam_ (λx→ x⊕Lit (− 1))
, lam_ (λx→ lam_ (λ t→ lam_ (λe→

IfZero x t (odd � (dec� x)� t� e))))
, lam_ (λx→ lam_ (λ t→ lam_ (λe→

IfZero x e (even� (dec� x)� t� e))))
])
(λ [dec,even,odd]→ even� Lit 4� Lit 1� Lit 0)

The only slightly tricky point is that we need to delay the pattern
match on the list of variables in the first argument to letrec_ (using
∼), because in an interpretation function, Haskell will not be able
to determine the number of elements in this list before looking at
the body of the lambda.

We can extending an interpretation function such as the evalua-
tor to cope with the presence of LetRec as follows:

eval :: ClosedExpr→ Value
eval . . . = . . . -- as before
eval (LetRec es e) = let rs = map eval (es rs) in eval (e rs)

An equivalent definition can be given in terms of fix:

eval (LetRec es e) = eval (e (fix (map eval◦es)))

3.4 Reusing native let syntax
It can be argued that despite the advantages of using explicit shar-
ing, it is still less convenient to use let_ or letrec_ than to use
Haskell’s native let construct.

Many EDSLs therefore actually use Haskell’s let, but recover
the sharing information by inspecting the internal representation of
the term, using an impure function. Such a function is provided, for
example, by the data-reify package [16]. The function returns a
graph representing subterms using numbers – a representation that
is neither particular safe nor directly suitable for further computa-
tions.

In the following, we show how we can combine reification with
our ASG approach. We start with arithmetic expressions with just
literals and addition:

data ExprD = LitD Int | AddD ExprD ExprD

The goal is to convert an implicitly shared term such as treeI 3
(using treeI from Figure 1 with type Int → ExprD, with obvious

definitions of one and ⊕) into an explicitly shared term of type
Expr as defined in Section 3.3.

In order to be able to use data-reify on terms of type ExprD,
we have to define a pattern functor [23] for expressions

data ExprF r = LitF Int | AddF r r

that has the same structure as ExprD, but abstracts from recursive
calls. We furthermore have to instantiate a class MuRef to make the
relationship between Expr and ExprF precise.

We are now provided with a function reifyGraph that converts a
value of type ExprD into a conventional graph representation based
on a list of type [(Int,ExprF Int)] associating integer labels with
partial terms. For example, reifyGraph (treeI 1) returns the graph

Graph [(1,AddF 2 2),(2,LitF 1)] 1

where the final 1 points to the root node.
We now define a function build that transforms such a list of

nodes into an explicitly shared ClosedExpr:

build :: [(Int,ExprF Int)]→ Int→ ClosedExpr
build env root =

letrec_ (λvs→ let go (LitF x) = Lit x
go (AddF v1 v2) =

Add (var vs v1) (var vs v2)
in map (go◦ snd) env)

(λvs→ var vs root)
where

var vs n =
fromJust (lookup n (zipWith (λ (i, ) x→ (i,x)) env vs))

In this definition, var associates the integer labels with a variable
from the list vs, and then looks up the label n. We convert between
values of type ExprF a and ExprD a using the function go.

Using build, we can now write programs like

test = do (Graph env r)← reifyGraph (treeI 3)
print (text (build env r))

where we create an implicitly shared term of type ExprD with treeI
and then convert it to a value of type ClosedExpr using reifyGraph
and build. We can then process the resulting ASG with functions
that observe sharing (such as text).

3.5 Summary
Our functional ASG representation is suitable for representing vari-
ous binding constructs in Haskell DSLs. However, there are at least
two situations in which the type safety we are able to obtain so
far is not quite satisfactory yet. Firstly, if the language itself has a
type system, then we might want to have a datatype explicitly en-
coding well-typed terms, which has consequences on how we have
to define the binding constructs. Secondly, for mutually recursive
bindings we can either add on a constructor for each number of
bindings and go via tuples, or we can add one constructor working
with lists as we have done. However, this requires maintaining an
implicit invariant that we match on no more bindings than we are
defining, and we have to perform a lazy pattern match.

In the following, we will show how to fix these issues by assign-
ing more precise types to our language constructs.

4. Typed Lists
This section presents lists that are indexed by the types of their
elements. Both homogeneous and heterogeneous lists of statically
known length can be represented using typed lists. We will make
use of typed lists for encoding well-typed mutually recursive bind-
ings in Sections 5 and 6.

Typed lists are defined using the following datatype:
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data TList :: (∗→ ∗)→∗→ ∗ where
TNil :: TList f ()
(:::) :: f t→ TList f ts→ TList f (t, ts)

A typed list TList f ts is parameterized by a type constructor f of
kind ∗ → ∗ and indexed by a signature of types ts. The signature
encodes a type-level list, with () representing the empty list and
(t, ts) representing the list with t as the head and ts as the tail.2
The signature determines both the length of the typed list and the
types of its elements. Where the signature contains a type t, the
corresponding element has type f t.

4.1 Heterogeneous and homogeneous lists
Typed lists can be viewed as a generalization of heterogeneous lists
of statically known length. Heterogeneous lists correspond to the
case where f = I, and I is the identity type constructor:

newtype I a = I {unI :: a}
Using I we can encode the following heterogeneous list:

hlist :: TList I (Int,(Int→ Int,(Bool,())))
hlist = I 3 ::: I (λx→ x) ::: I False ::: TNil

In this case hlist is an heterogeneous list that contains values of type
Int, Int→ Int and Bool as elements, and the types of the elements are
reflected in the signature.

Typed lists are also a generalization of homogeneous lists. Ho-
mogeneous lists correspond to the case where a = K b, and K b is
the constant type constructor:

newtype K b a = K {unK :: b}
For example, we can encode the list [1,2,3] as follows:

list :: TList (K Int) (t,(t1,(t2,())))
list = K 1 ::: K 2 ::: K 3 ::: TNil

The use of the constant functor means that all elements are of
type Int. The concrete types that occur in the signature become
irrelevant; the signature merely encodes the length of the list.

4.2 Basic operations
We can access the head and the tail of non-empty typed lists:

thead :: TList f (t, ts)→ f t
thead (x ::: xs) = x

ttail :: TList f (t, ts)→ TList f ts
ttail (x ::: xs) = xs

Unlike for regular head and tail, no pattern matching errors can
occur in thead and ttail, because the type signature specifies that
the input list must have at least one element.

Another useful operation is tlength, which returns the number
of elements in a typed list:

tlength :: TList v t→ Int
tlength TNil = 0
tlength (x ::: xs) = 1 + tlength xs

2 Alternatively, we could use recent GHC extensions that allow kind poly-
morphism and datatype promotion [39] to provide a more direct definition
of typed lists:

data TList :: (k→∗)→ [k ]→∗ where
TNil :: TList f ′[ ]
(:::) :: f t→ TList f ts→ TList f (t ′: ts)

As these extensions are still in flux at the time of writing this paper and
will only be finalized for the 7.6 release of GHC, we have chosen the more
classic approach of (ab)using kind ∗ throughout this paper.

4.3 Mapping and zipping
Operations like map or zipWith have counterparts in the world
of typed lists. Where map lifts a function of type a → b to a
function on lists, the corresponding tmap operates on a natural
transformation of type ∀t.f t→ g t:

tmap :: (∀t.f t→ g t)→ TList f t→ TList g t
tmap f TNil = TNil
tmap f (x ::: xs) = f x ::: tmap f xs

Apart from the more general type, the code of tmap is the same
as that for map. We can easily obtain a specialized version for
homogeneous lists:

tmapK :: (a→ b)→ TList (K a) ts→ TList (K b) ts
tmapK f = tmap (K◦ f◦unK)

A generalization of zipWith for typed lists can be obtained in a
similar fashion:

tzipWith :: (∀t.f t→ g t→ h t)→
TList f ts→ TList g ts→ TList h ts

tzipWith f TNil TNil = TNil
tzipWith f (x ::: xs) (y ::: ys) = f x y ::: tzipWith f xs ys

Note that the type signature of tzipWith dictates the both input lists
as well as the output list share a common signature and therefore
must in particular be of the same length. As a result, we have to
provide only two cases, where either both input lists are empty, or
both input lists are non-empty.

4.4 Producers of typed lists
We will also need a version of iterate that operates on typed
lists. This operation is interesting because it produces a typed list,
whereas all the functions we have defined above are consumers of
typed lists.

While the conventional iterate function produces an infinite list,
we now have to produce a list of a statically given signature, and
in particular length. We therefore have to define our typed version
of iterate by induction over the signature ts. As a consequence, the
function cannot simply be of type

(a→ a)→ a→ TList (K a) ts

because we have to produce a result that is polymorphic in ts,
and we have no way in Haskell to analyze ts. We can, however,
use a well-known type-level programming technique [6] to reflect
the structure of the signature to the value level and then perform
induction over the reflected signature:

data RList ::∗→ ∗ where
RNil :: RList ()
RCons :: RList ts→ RList (t, ts)

Using RList, it is now straight-forward to define a version of iterate
for typed lists:

titerate′ :: RList ts→ (a→ a)→ a→ TList (K a) ts
titerate′ RNil f n = TNil
titerate′ (RCons xs) f n = K n ::: titerate′ xs f (f n)

4.5 Using type classes for producers
Using titerate′ is inconvenient, because in order to invoke it, we
have to pass a term of type RList ts, and constructing such a term
is tedious. We can, however, use a type class to build a value of the
appropriate type automatically and pass it implicitly, so that we can
define a more convenient function titerate as follows:

titerate :: CList ts⇒ (a→ a)→ a→ TList (K a) ts
titerate = titerate′ cList
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The type class CList and its instances are:

class CList t where
cList :: RList t

instance CList () where
cList = RNil

instance CList ts⇒ CList (t, ts) where
cList = RCons cList

The resulting function titerate can be used almost in the same way
as iterate:

tenumFrom :: CList ts⇒ Int→ TList (K Int) ts
tenumFrom n = titerate (+ 1) n

test :: TList (K Int) (t1,(t2,()))
test = tenumFrom 0

The main difference is that the type is important to determine how
many elements will be generated. For example, test generates a list
with the elements K 0 and K 1, because the signature of test is a
type-level list with two elements t1 and t2.

5. Typed ASGs and DSLs
This section shows how to define well-typed abstract syntax graphs.
We will illustrate this by adapting the interpreter presented through-
out Section 3 to ensure that all terms are well-typed by construc-
tion. As for the untyped interpreter, observing sharing and recursion
is possible. Because mutually recursive LetRec subsumes normal
Let and Mu, we drop the latter two from the language.

5.1 Well-typed Abstract Syntax Graphs
If we want to model well-typed ASGs, we have to first introduce
an additional type argument that serves as the index for the type
of the value being represented, and then adapt the types of the
constructors in order to establish the typing rules of the embedded
language.

But how do we represent variables? As the embedded language
is now indexed by a type argument, variables can be of different
(Haskell) types. Therefore, we change the type parameter for vari-
ables from kind ∗ to kind ∗ → ∗: we pass in a type function that,
given a type of the embedded language, returns the associated type
of variables.

If we apply this strategy to our example expression language,
we end up with the following datatype:

type ClosedExpr t = ∀f.Expr f t

data Expr (f ::∗→ ∗) ::∗→ ∗ where
Lit :: Int→ Expr f Int
Add :: Expr f Int→ Expr f Int→ Expr f Int
IfZero :: Expr f Int→ Expr f t→ Expr f t→ Expr f t
Var :: f t→ Expr f t
Lam :: (f t1→ Expr f t2)→ Expr f (t1→ t2)
App :: Expr f (t1→ t2)→ Expr f t1→ Expr f t2
LetRec :: CList ts⇒ (TList f ts→ TList (Expr f) ts)→

(TList f ts→ Expr f t)→ Expr f t

In the Var case, we pass the type t to the parameter function f
to obtain a suitable variable type, as was our plan. The case for
Lam shows that apart from adding type arguments everywhere, the
structure of representing binders remains the same.

The case for mutually recursive bindings LetRec is more inter-
esting. Here, we now use typed lists (as introduced in Section 4)
rather than ordinary lists. They keep track of the types of all the el-
ements in the list, and thereby at the same time determine the length
of the list. Therefore, by using the same signature ts three times for
the three occurrences of TList, we now establish statically that all

three occurrences have exactly the same shape. This is a big im-
provement over the untyped encoding which does not provide such
guarantees.

Furthermore, the CList ts constraint in LetRec guarantees that
expressions built with this constructor support reifying the type-
level list into a value of type RList ts. This is useful when we want
to use producer functions like titerate to define functions over Expr.

As in the untyped setting, parametricity still ensures that we
cannot inspect variables as long as an expression is polymorphic in
the variable type function f. We define ClosedExpr as an abbrevia-
tion for such closed terms again.

5.2 Well-typed evaluator
Let us now look at interpretation functions in this setting. Starting
with the evaluator, we obtain the following code:

eval :: Expr I t→ t
eval (Lit i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (IfZero e1 e2 e3) = if eval e1 = = 0 then eval e2 else eval e3
eval (Var x) = unI x
eval (Lam e) = eval◦e◦ I
eval (App e1 e2) = (eval e1) (eval e2)
eval (LetRec es e) = eval (e (fix (tmap (I◦eval)◦es)))

Unlike the interpreter we defined in Section 3, there is no need for
a separate Value datatype for values. Since we used the Haskell
type constructors Int and (→) to model the type language of the
embedded language, we can simply use t as value type of a term
that has type Expr f t. For the purposes of evaluation, we have to
instantiate f with a type function that makes this relation explicit:
the identity type constructor I.

The resulting interpreter is untagged. There are no constructors
wrapping the values, and we do not need to perform any type-
checking at run-time. We statically know that in each construct,
the arguments we obtain are of the correct types.

While the code for the “normal” language constructs becomes
simpler, the code for the binding constructs remains nearly un-
changed: we only have to sprinkle coercion functions unI and I to
help the type checker along.

As before, we can define wrappers for certain constructors to
make the use of the language a bit more convenient. For example:

(⊕) = Add
one = Lit 1

lam_ :: (Expr f t1→ Expr f t2)→ Expr f (t1→ t2)
lam_ e = Lam (λx→ e (Var x))

letrec_ :: CList ts⇒ (TList (Expr f) ts→ TList (Expr f) ts)→
(TList (Expr f) ts→ Expr f t)→ Expr f t

letrec_ es e = LetRec (λxs→ es (tmap Var xs))
(λxs→ e (tmap Var xs))

If we want non-recursive let-bindings or a simple fixed-point con-
struct back, we can easily define these in terms of letrec_. For ex-
ample:

let_ :: Expr f t1→ (Expr f t1→ Expr f t2)→ Expr f t2
let_ e1 e2 = letrec_ (λ → e1 ::: TNil) (λ (x ::: TNil)→ e2 x)

Using the definitions above, we can still distinguish between im-
plicitly shared and explicitly shared terms in exactly the same way
as before. The two versions treeI and treeE defined in Figure 1 are
valid in the typed setting without any change of the code – only the
type becomes

Int→ Expr f Int
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in both cases. The implicitly shared version will still lose sharing
during evaluation, whereas the explicitly shared version still evalu-
ates quickly.

In summary, the same properties regarding observable sharing
and recursion apply to well-typed terms: the addition of typing in-
formation does not affect the preservation of sharing and recursion.

On the other hand, we now can no longer define terms that are
ill-typed according to the type system of our DSL. For instance,
example from Section 3.1 fails to type check, because it uses twice
at two different types, but our DSL has only monomorphic types.

5.3 Printing terms
Let us also look at how we have to adapt the function text that
we have introduced in Section 2.4. Here, the relation between
DSL types and result types is different compared to evaluation:
regardless of the DSL type that a variable has, they are all printed
as strings. Therefore, we use the K type constructor rather than I:

text :: ClosedExpr t→ String
text e = go e 0

where
go :: Expr (K String) t→ Int→ String
. . . -- cases for Lit, Add, IfZero, App as before
go (Var x) = unK x
go (Lam e) c =

"(\\ "++ v++" -> "++go (e (K v)) (c + 1)
where v = "v"++ show c

go (LetRec es e) c =
"(let { "++ intercalate "; " ds++
" } in "++go (e vs) c′++")"
where

vs = tmapK (λ i→ "v"++ show i) (tenumFrom c)
c′ = c + tlength vs
ds = ttoList $

tzipWith (λ (K v) e→ K (v++" = "++go e c′))
vs (es vs)

Similarly to the evaluator code, we must add a few coercion func-
tions (K and unK) throughout the pretty printer code.

The LetRec case is interesting again, because we have to deal
with typed lists. In vs, we define the strings representing each
of the bound variables. First, we generate numbers starting from
the current counter c using tenumFrom. Then we map over the
list, moving from type K Int to K String. How many variables are
generated is determined by the type context! In the declaration of
ds, we pass our typed list of strings to the declaration function es,
and the type of LetRec dictates that the inputs lists of variables must
have the same shape as the output list of bindings.

Note that tenumFrom works only for result types that actually
are list types, as witnessed by the CList constraint – this is an
example for why we need to put a CList constraint in the type of
the LetRec constructor.

In ds, we then take the list of variables vs and the list of
expressions es vs and generate strings representing each of the
bindings using tzipWith. We end up with a typed list containing
elements of type K String, but we would actually like to have a list
of strings at this point. The function ttoList achieves this:

ttoList :: TList (K a) ts→ [a]
ttoList TNil = [ ]
ttoList (K x ::: xs) = x : ttoList xs

Finally, we separate each of the bindings by "; " by using the
standard list function intercalate and append everything together
in a single string.

6. Encodings of ASGs
In this section, we discuss an encoding of ASGs using type classes.
This approach is interesting because it stands somewhere in-
between a shallow and a deep embedding. Like for deep embed-
dings, it is possible to have multiple interpretations and perform
a form of syntactic analysis. Like for shallow embeddings, it is
possible to use Haskell’s built-in let to preserve (but not observe)
sharing. Moreover, it is easy to extend the language and add new
constructs without touching existing code. For the deep embed-
dings we have been using in Sections 2.4, 3 and 5, adding a new
constructor requires modifying all the interpretation functions.

Uses of sharing in the embedded language can still be explicit
and therefore can be observed and as needed and we can maintain
the level of type safety established in Section 5.

An additional advantage of the class-based encoding is that
it is possible to provide reusable code for the binding constructs
we have presented. As binding constructs are useful and similar
throughout many DSLs, being able to reuse code reduces the im-
plementation burden on DSL designers.

6.1 Encoding datatypes as type classes
Hinze [18] showed that type classes provide a convenient way to
define Church encodings of datatypes. Moving from a (generalized)
algebraic datatype to a class is an entirely mechanical process.
As an example, let us consider how to encode simple well-typed
arithmetic expressions like the ones presented in Section 5, i.e., we
base this construction on the type Expr from Section 5.1, but we
consider only the Lit and Add constructors for now:

class ArithAlg expr (f ::∗→ ∗) where
lit :: Int→ expr f Int
(⊕) :: expr f Int→ expr f Int→ expr f Int

Looking at the transformation from a syntactic perspective, all we
have done was: to change the datatype declaration to a class, to
transform the data constructors into methods of the class, and to
use a class parameter expr wherever the original datatype Expr was
being used.

Semantically, ArithAlg encodes the signature of algebras of the
original datatype. Instances of ArithAlg correspond to fold-like
functions over that datatype. For the reader interested in knowing
more about this technique we suggest several resources available
elsewhere [18, 30, 5].

6.2 Encoding Binders
We can follow the same recipe to encode binders. Let us again
consider the datatype Expr from Section 5.1, ignoring all but the
two binding-related constructors Var and LetRec. We obtain the
following type class:

class BindAlg expr f where
var :: f t→ expr f t
letrec :: CList ts⇒ (TList f ts→ TList (expr f) ts)→

(TList f ts→ expr f t)→ expr f t

As before, it is possible to define wrappers that allow more con-
venient use of binding constructs, or that define simpler binding
constructs in terms of letrec. As an example, here is the code for
non-recursive let-bindings:

let_ :: BindAlg expr f⇒ expr f t1→
(expr f t1→ expr f t2)→ expr f t2

let_ e1 e2 = letrec (λ → e1 ::: TNil) (λ (x ::: TNil)→ e2 (var x))

6.3 Generic behaviour for binders
As observed by Oliveira and Cook [29], there are many operations
that share a common definition for the binding constructs. We use
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this observation to capture this generic behavior by providing a
“default” instance for BindAlg. This instance can subsequently be
reused when defining suitable operations:

newtype Default f t = D {unD :: f t}
instance BindAlg Default f where

var x = D x
letrec es e = e (fix (tmap unD◦es))

This definition turns out to be useful for operations such as evalua-
tion or inlining – whenever we do not need to observe sharing. For
functions such as text, we want to observe the binding structure and
will require a different instance.

6.4 Extensibility
An advantage of using the class-based approach is that in contrast
to datatypes, which are closed to extension, we can add new cases
to a language simply by defining another class [31].

Several DSLs share a number of common components. For ex-
ample, many DSLs will have the arithmetic expressions and recur-
sive binders that we already discussed. Adding a new set of DSL
constructs is as simple as defining a new type class. For example,
we can create a third class LamAlg for lambda and application:

class LamAlg expr f where
lam :: (f t1→ expr f t2)→ expr f (t1→ t2)
app :: expr f (t1→ t2)→ expr f t1→ expr f t2

If we want to state that expressions are given by the combination of
the three classes we have defined above, we can denote that with

class (BindAlg expr f,ArithAlg expr f,LamAlg expr f)⇒
ExprAlg expr f

We can build terms in this language by applying and combining
class methods from each of the three classes. Closed expressions
are overloaded in the instantiation of ExprAlg:

type ClosedExpr t = ∀expr f.ExprAlg expr f⇒ expr f t

6.5 Evaluation
In order to define evaluation, we define instances for each of the
classes separately. If desired, we could define these instances at
different times, when we decide to extend the language with new
constructs, and without touching existing code.

No instance for BindAlg is needed – we can reuse the default
instance defined above. We have to provide instances for ArithAlg
and LamAlg, however. A ClosedExpr t evaluates to a t, so we could
choose I as the instantiation of the f arguments of the classes.
However, while several functions on expressions might share the
same type signature, there can be only a single instance each for
ArithAlg Default I and LamAlg Default I. Therefore, we define a new
type isomorphic to I specifically for the evaluation function:

newtype Eval t = E {unE :: t}
eval :: Default Eval t→ t
eval = unE◦unD

toE :: t→ Default Eval t
toE = D◦E

The instances are then straightforward:

instance ArithAlg Default Eval where
lit i = toE i
e1⊕e2 = toE (eval e1 + eval e2)

instance LamAlg Default Eval where
lam f = toE (eval◦ f◦E)
app e1 e2 = toE ((eval e1) (eval e2))

instance ExprAlg Default Eval

Note that eval can be applied directly to a term of type ClosedExpr.

6.6 Shared trees
If we abbreviate one = lit 1, and use Int→ ClosedExpr Int as type
signature, then the two versions treeI and treeE from Figure 1 work
once again. However, the behavior here is similar to what we dis-
cussed in Section 2 for shallow DSLs: both versions preserve shar-
ing. There is no indirection of data constructors when using the
class-based encoding: a term is directly encoded as its interpreta-
tion (or actually, all possible interpretations).

However, there are still advantages to using explicit sharing, as
implicit sharing remains rather fragile: if we, for example, define a
function

double :: ClosedExpr t→ ClosedExpr t

that traverses an expression and doubles all literals, then the traver-
sal over an implicitly shared term will destroy the sharing. We also
need to be explicit whenever we have to observe sharing.

6.7 Printing terms
As an example of an operation that observes sharing and does not
make use of the default instance for BindAlg, we return to our text
function. We only show the instance for BindAlg:

newtype Text (f ::∗→ ∗) t = T { text′ :: Int→ String}
instance BindAlg Text (K String) where

var x = T (λ → unK x)
letrec es e = T (λc→

let vs = tmapK (λ i→ "v"++ show i) (tenumFrom c)
c′ = c + tlength vs
ds = ttoList $

tzipWith (λ (K v) e→ K (v++" = "++ text′ e c′))
vs (es vs)

in "(let { "++ intercalate "; " ds++
" } in "++ text′ (e vs) c′++")")

The code is nearly the same as that given in Section 5.3 – the other
cases (i.e., instances) work accordingly.

The actual text function wraps text′:

text ::∀t.ClosedExpr t→ String
text e = text′ (e :: Text (K String) t) 0

6.8 Summary
Using the class-based encoding of ASGs is recommended when-
ever extensibility is a must. It is easily possible to encode well-
typed terms in the class-based setting, but actually not necessary.
The untyped ASGs of Section 3 can easily be translated into the
class-based setting as well. A disadvantage of the class-based en-
coding is that it forces interpretation functions to be folds – if func-
tions require nested pattern matches or have strange recursion be-
havior, they can be tricky to encode as algebras.

7. Related Work
There is a lot of work in the domain of DSLs. As such, in this
section, we focus only on the closest related work, paying special
attention to approaches to observable sharing and work on how to
represent binders for sharing and recursion.

Observable sharing and recursion through binding This paper
proposes ASGs as a better alternative to ASTs for representing em-
bedded DSLs. ASTs can be complemented with explicit environ-
ments and encodings of binders to provide enough information to

10 2012/6/3



observe sharing and recursion via explicit labels. This approach is
widely used in traditional compilers, interpreters and even external
DSLs; and it has also been used with some embedded DSLs [4, 28]
However, this approach requires explicit management of the en-
vironments and the well-scopedness of labels is usually not stat-
ically guaranteed. Monads [36] can help with some of the issues
regarding the management of explicit environments and genera-
tion of fresh labels [4]. Nevertheless the introduction of monads
can make the DSL more complicated to use. For embedded DSLs,
which require a lightweight and easy way to construct and manip-
ulate the DSL syntax, the use of environments and first-order la-
bels can be quite cumbersome. In contrast to traditional AST ap-
proaches, ASGs are more lightweight: there is no need to deal with
explicit environments and, additionally, ASGs guarantee the well-
scopedness of labels.

This paper shows how ASGs can deal with well-typed terms
and modular DSL constructs. Although there has been prior work
on functional representations of cyclic structures (or graphs) us-
ing lightweight encodings of recursive binders [13, 15, 17, 29],
these works have not discussed the applications to DSLs and how
to deal with well-typed terms and modular DSL constructs. The
ASGs presented in this paper are a form of structured graphs [29]:
an extension of algebraic datatypes with recursive binders to model
cycles and sharing. The binding constructs that we present in this
paper are slightly different and more suited for DSLs: the Let con-
struct, which expresses simple sharing, was not discussed before;
and LetRec provides a direct encoding of a mutually recursive lo-
cal binding construct. More significantly, this paper shows how
to encode generalized structured graphs (in analogy with gener-
alized algebraic datatypes), and how to do modular encodings of
such generalized structured graphs. There have been other pro-
posals [13, 15, 17] for modelling cyclic structures using explicit
binders before structured graphs. However, those approaches have
several limitations in terms of expressiveness and tend to require
significant sophistication to encode binders. This is why we chose
structured graphs as the basis for our ASGs.

Typed transformations of grammars Our work shows that ma-
nipulations of well-typed terms with sophisticated (mutually-
recursive) binding constructs can be performed with only a modest
amount of type-level machinery. Analysis and transformations on
grammars have been a hot topic recently [2, 9, 27, 3, 11] and are a
closely related line of work. Grammars are cyclic graph-like struc-
tures and well-typed representations of grammars are interesting
due to their relation with parser combinators [22]. Like our own
work, a main concern in this line of work is how to do manip-
ulations of well-typed terms. Baars et al. [2, 3] use typed refer-
ences and typed environments in their typed transformations. The
datatype of typed lists is closely related to datatype definitions of
well-typed references and environments, but it is used quite dif-
ferently. Baars et al. still use ASTs: there is a (well-typed) AST
and external (well-typed) environments track the binding informa-
tion. The relationship between a reference and an environment is
statically enforced in a way similar way to well-scoped/typed de
Bruijn indices [1]. In contrast, ASGs internalize the binding in-
formation about sharing and recursion and do not require external
environments. This avoids some sophisticated type-machinery that
is required by Baars et al. to relate typed references to typed en-
vironments. Devriese and Piessens [11] take a step towards ASGs
by proposing a representation of grammars with an explicit recur-
sive binder. This class-based representation is closest to the class-
based representation in Section 6. However they do not discuss
a representation based on algebraic datatypes or mutually recur-
sive binders; and their approach still requires some advanced type
system features like type families [35] and functional dependen-
cies [24].

Observable sharing and recursion via references The purely
functional nature of the ASGs proposed in this paper makes rea-
soning easy, ensures properties like referential transparency, and
does not require impure programming interfaces. An alternative
way to observe sharing is via the use of pointers or references.
This approach has been quite effectively used in many DSL im-
plementations [8, 16]. However, the use of references breaks ref-
erential transparency and significantly complicates reasoning [33].
In a language like Haskell, we furthermore have to use an IO-based
interface to inspect the internal structure, making the approach less
easy to use. We argue that even if one decides to use a partially
impure approach to recover implicit sharing, one needs a solid ex-
plicit representation such as ASGs to work with the results (similar
to what we have shown in Section 3.4).

GADT encodings, modularity and DSLs In Section 6, we show
how to encode ASGs using type classes and a PHOAS-based rep-
resentation of binders. Hinze [18] was the first to point out that
type classes provide a way to represent encodings of datatypes in
Haskell. He exploited this fact to implement a generic program-
ming library (which is essentially an embedded DSL). Inspired by
Hinze’s work, Oliveira and Gibbons [30] have shown general pat-
terns for those techniques and used them to several other applica-
tions. In following work Oliveira et al. [31] showed that variants
of these class-based encodings are extensible and can solve the ex-
pression problem [37]. The extensible and modular solution that
we employed in Section 6 follows Oliveira et al.’s technique. Later
work by Carette et al. [5] and Hofer et al. [19] (in Scala) popu-
larized such class-based encodings for defining well-typed inter-
preters and EDSLs. Like us, both Carette et al. and Hofer et al. dis-
cuss how to deal with binders. However, our solution differs from
theirs in the way binders are represented. Their representation of
binders uses a Church-encoded version of classic HOAS (similar
to the proposal by Washburn and Weirich [38]). In contrast, we use
a representation of binders based on PHOAS. Furthermore, we also
show how to encode well-typed mutually recursive binders.

A PHOAS-based representation of binders is well-suited for
representations based on algebraic datatypes as well as represen-
tations based on type classes. The issues of sharing in DSLs are
discussed by Kiselyov [25]. Kiselyov shows how to detect implicit
sharing and how to implement explicit sharing. However, he only
shows to implement explicit sharing using a class-based represen-
tation. In contrast, we also demonstrate how to use an approach
based on algebraic datatypes, and how to model mutually recursive
binding constructs. A difficulty of applying Kiselyov’s approach to
a datatype-based representation is that he uses encodings of clas-
sic HOAS binders. Therefore, going back to algebraic datatypes
would require using conventional HOAS binders. As discussed in
Section 2.3, such binders can be problematic.

Preserving sharing ASGs allows both preserving and observ-
ing sharing. Hughes proposes a functional programming language
extension for lazy memo functions [21]. This extension allows
functions like map to preserve sharing of their inputs. Due to its
language-based nature this approach is convenient and transparent
to use: sharing is preserved implicitly. ASGs also preserve sharing,
but this has to be done explicitly. However ASGs also allow to
observe sharing, which is not possible with lazy memo functions.

ASGs in visual languages and language workbenches Lan-
guage workbenches are an increasingly popular approach to model-
driven design and DSLs. Language workbenches provide a com-
plete framework for the design and implementation of DSLs. Some
language workbenches use variants of ASGs (modeled with ref-
erences) have been used to describe the abstract syntax of lan-
guages [14]. ASGs are also popular to describe abstract syntax of
visual languages [34, 12].
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8. Conclusion
For the implementation of real-life EDSLs, preserving and observ-
ing sharing is usually essential. Representing sharing implicitly is
usually too fragile and precludes the possibility of observation.

For a long time, ASTs have been the preferred choice for repre-
senting abstract syntax. However, ASTs need to be complemented
with environments to allow transformations that rely on observing
and preserving sharing or recursion. In the context of EDSLs, we
desire representations of abstract syntax that are lightweight and
easy to use. While approaches based on a combination of ASTs and
environments are powerful, they are also heavyweight and compli-
cate the use of abstract syntax.

We propose using ASGs instead of ASTs to provide a more
convenient representation of abstract syntax. ASGs internalize the
information about sharing and recursion directly in the represen-
tation. As such, environments can in most cases be avoided, and
there is no need to deal with other binding-related issues such as α-
equivalence, name capture or generation of fresh variables. While
ASGs can be implemented by using impure reference equality to
observe sharing and recursion, we believe that the more disciplined
representation based on structured graphs proposed here has signif-
icant benefits in terms of reasoning, safety, and ease of use.

Finally, we show that ASGs are flexible: they extend nicely to
the generalized setting of terms with statically encoded type infor-
mation, and they are suitable for class-based as well as datatype-
based encodings. The ability to encode well-typed terms is partic-
ularly interesting, because many DSLs have type systems that can
be encoded directly in the host language. The ability to modularize
DSL constructs is important to provide flexibility and reuse.
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