Staged generics-sop

IFIP WG 2.1 meeting \#79, Otterlo
Matthew Pickering, Andres Löh
2020-01-07

AWell-Typed

The Haskell Consultants

generics-sop

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum $f\left[x_{1}, x_{2}, x_{3}\right] \approx f x_{1}+f x_{2}+f x_{3}$ Product $f\left[x_{1}, x_{2}, x_{3}\right] \approx f x_{1} \times f x_{2} \times f x_{3}$

Sums and products

Sum :: (a -> Type) -> [a] -> Type
Product :: (a -> Type) -> [a] -> Type

Sum $f\left[x_{1}, x_{2}, x_{3}\right] \approx f x_{1}+f x_{2}+f x_{3}$
Product $f\left[x_{1}, x_{2}, x_{3}\right] \approx f x_{1} \times f x_{2} \times f x_{3}$

Sum (Product f) ([$\left.x_{1}, x_{2}\right],[],\left[x_{3}, x_{4}, x_{5}\right]$)

$$
\approx\left(f x_{1} \times f x_{2}\right)+1+\left(f x_{3} \times f x_{4} \times f x_{5}\right)
$$

Example datatype

data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int

Example datatype

data Animal =
HoppingAnimal String Double | WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]] \approx (I String \times I Double) + (I String \times I Int) \approx (String \times Double) + (String \times Int $)$

Example datatype

data Animal =
HoppingAnimal String Double | WalkingAnimal String Int

Sum (Product I) [[String, Double], [String, Int]] \approx (I String \times I Double) + (I String \times I Int) \approx (String \times Double) + (String \times Int $)$

Description Animal = [[String, Double], [String, Int]]
from :: Animal -> Sum (Product I) (Description Animal)
to :: Sum (Product I) (Description Animal) -> Animal

A class for representable types

```
class (All (All Top) (Description a)) => Generic a where
    type Description a :: [[Type]]
    from :: a -> Sum (Product I) (Description a)
    to :: Sum (Product I) (Description a) -> a
```


Operations on sums and products

mapsum : :

$$
\begin{aligned}
& \text { All Top xs } \\
\Rightarrow & (\forall x \cdot f x->g x)->\text { Sum } \quad f \times s->\text { Sum } \quad g \times s
\end{aligned}
$$

mapproduct :

$$
\begin{aligned}
& \text { All Top } x s \\
\Rightarrow & (\forall x \cdot f x->g x)->\text { Product } f x s->\text { Product } g x s
\end{aligned}
$$

Operations on sums and products

cmap $_{\text {Sum }} \quad:$:

$$
\begin{aligned}
& \text { All c xs } \\
\Rightarrow & (\forall x \cdot c x=>f x \rightarrow g x) \\
\Rightarrow & \text { Sum } \quad f \times s \rightarrow \text { Sum } \quad g x s
\end{aligned}
$$

cmapproduct : :
All c xs
$\Rightarrow(\forall x . c x=>f x \rightarrow g x)$
-> Product f xs -> Product g xs
cmap $_{\text {SoP }} \quad::$

$$
\begin{aligned}
& \text { All (All c) xs } \\
& \Rightarrow(\forall x . c x=>f x \rightarrow g x) \\
& \text {-> Sum (Product f) xs -> Sum (Product g) xs }
\end{aligned}
$$

Operations on sums and products

$$
\begin{aligned}
& \text { cpur } \text { Product }^{\text {Pro }} \\
& \text { All c xs } \\
& \quad=>(\forall x \cdot c x=>f x) \\
& \quad>\text { Product } f x s
\end{aligned}
$$

Operations on sums and products

$$
\begin{aligned}
& \text { collapsesum : All Top xs => Sum (K a) xs -> a } \\
& \text { collapse }{ }_{\text {Product }} \text { : : All Top xs => Product (K a) xs -> [a] }
\end{aligned}
$$

Operations on sums and products

zipWithproduct : :

$$
\begin{aligned}
& \text { All Top xs } \\
=> & (\forall x \cdot f \times x->g x->h x) \\
-> & \text { Product } f \times s \rightarrow \text { Product } g \text { xs }->\text { Product } h x s
\end{aligned}
$$

Operations on sums and products

```
zipWithProduct ::
        All Top xs
    => (}\forall\textrm{x}.\textrm{f}x -> g x -> h x)
    -> Product f xs -> Product g xs -> Product h xs
zipWithsum ::
        All Top xs
    => (}\forall\textrm{x}.f\textrm{f}|>\textrm{g}x>>hx
    -> Product f xs -> Sum g xs -> Sum h xs
```


Operations on sums and products

```
anaproduct ::
        All Top xs
    => (\forally ys . s (y : ys) -> (f y, s ys))
    -> s xs -> Product f xs
```


Arities of each constructor

```
constructorArities : :
    Generic a => Product (K Word) (Description a)
constructorArities =
    cpure Product \(^{( }\)(All Top) go
    where
    go : : \(\forall\) xs . All Top xs \(=>K\) Word \(x s\)
go \(=K(\) fromIntegral (lengthsList \(@ x s))\)
```


Arities of each constructor

constructorArities : :
Generic a => Product (K Word) (Description a)
constructorArities =
cpureproduct @(All Top) go where

$$
\begin{aligned}
& \text { go }:: \forall \text { xs . All Top xs }=>\text { K Word xs } \\
& \text { go }=K(\text { fromIntegral (length SList @xs)) }
\end{aligned}
$$

Example:
data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int
constructorArities @Animal

$$
=\text { K } 2: * \text { K } 2: * \mathrm{Nil}
$$

Numbering each constructor

```
constructorNumbers ::
    Generic a => Product (K Word) (Description a)
constructorNumbers =
    anaproduct
        (\ (K i) -> (K i, K (i + 1)))
    (K 0)
```


Numbering each constructor

constructorNumbers : : Generic a => Product (K Word) (Description a) constructorNumbers = anaproduct

```
(\ (K i) -> (K i,K (i + 1)))
(K 0)
```

Example:
data Animal =
HoppingAnimal String Double
| WalkingAnimal String Int
constructorNumbers @Animal

$$
=\mathrm{K} 0: * \mathrm{~K} 1: * \mathrm{Nil}
$$

Encoding, generically

```
gencode ::
    \forall a . (Generic a, All (All Serialise) (Description a))
    => a -> Encoding
gencode x =
    collapsesum
    (czipWith3sum @(All Top)
        (\ (K a) (K i) encs ->
            K ( encodeListLen (a + 1)
            <> encodeWord i
            <> mconcat (collapse Product encs)
                )
            )
            (constructorArities @a)
            (constructorNumbers @a)
        (cmapsop @Serialise (\ (I y) -> K (encode y)) (from x))
    )
```


Staging using Typed Template Haskell

Quotes and splices

```
type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}
```


Quotes and splices

```
type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}
ex 1 :: Code Int
ex = [|| 1 + 2 + 3 ||]
```


Quotes and splices

```
type Code a = Q (TExp a)
newtype Code' a = Code {unCode :: Code a}
ex
ex}\mp@subsup{1}{1}{=[|| 1 + 2 + 3 ||]
ex2 :: Code Int
ex = [|| $$ex * * $$ex | ||]
AST:(1 + 2 + 3) * (1 + 2 + 3)
```


Lifting

f : : Int -> Code Int
$f x=[||x+x||]$
ex_{3} :: Code Int
$e x_{3}=[\| \| \$(f(1+2+3)) \|]$
AST: $6+6$

Lifting

```
f :: Int -> Code Int
f x = [|| x + x ||]
ex3 :: Code Int
ex3 = [|| $$(f (1 + 2 + 3)) ||]
AST: 6 + 6
g :: Lift a => [a] -> Code [a]
g xs = [|| reverse xs ||]
ex4 :: Code [Int]
ex4 = [|| $$(g (replicate 3 1)) ||]
AST: reverse [1, 1, 1]
```


Using variables before they are defined

$$
\begin{aligned}
& f:: \text { Int -> Code Int } \\
& \text { f } x=[||x+x||] \\
& e x_{5}:: \text { Code (Int -> Int) } \\
& e x_{5}=[||\backslash x->\$ \$(f x)||] \text {-- not ok }
\end{aligned}
$$

Stage error: ' x ' is bound at stage 2 but used at stage 1

Using variables before they are defined

```
f :: Int -> Code Int
f x = [|| x + x ||]
ex 
ex = [|| \x -> $$(f x) ||] -- not ok
```

Stage error: ' x ' is bound at stage 2 but used at stage 1

But this is ok:
h :: Code Int -> Code Int
h $x=[||\$ \$ x+\$ \$ 1|]$
ex 6 :: Code (Int -> Int)
$e x_{6}=[||\backslash x \rightarrow \$ \$(h[| | x| |])||]$
AST: $\backslash x->x+x$

Hello world of staging

```
square : : Int -> Int square \(\mathrm{x}=\mathrm{x}\) * x
```


Hello world of staging

```
square :: Int -> Int
square x = x * x
```

power : : Int -> Int -> Int
power n x
| $\mathrm{n}=0=1$
| even $n=$ square (power (n 'div' 2) x)
| otherwise $=x$ * power $(n-1) x$

Hello world of staging

```
square :: Int -> Int
square x = x * x
power :: Int -> Int -> Int
power n x
    | n == 0 = 1
    | even n = square (power (n `div` 2) x)
    | otherwise = x * power (n - 1) x
spower :: Int -> Code Int -> Code Int
spower n x
    | n == 0 = [|| 1 ||]
    | even n = [|| square $$(spower (n `div` 2) x) ||]
    | otherwise = [|| $$x * $$(spower (n - 1) x) ||]
```


Staging generics-sop

Basic idea

Structure is statically known, so rather than Sum (Product I) (Description a)
let us use
Sum (Product Code') (Description a)

Staged conversions

```
class Generic a => SGeneric a where
sfrom ::
        Code a
    -> (Sum (Product Code') (Description a) -> Code r)
    -> Code r
sto ::
    Sum (Product Code') (Description a)
    -> Code a
```


Example

The function sfrom introduces case analysis and passes the representation to the continuation:
instance SGeneric Animal where

```
sfrom x k =
    [|]
        case $$x of
            HoppingAnimal n d ->
            $$(k (Z (Code [|| n ||]:* Code [|| d ||]:* Nil)))
            WalkingAnimal n i ->
            $$(k (S (Z (Code [|| n ||]:* Code [|| i ||]:* Nil))))
        |]
sto x = ...
```


Staged generic encode

```
gencode ::
    \forall a . (Generic a, All (All Serialise) (Description a))
    => a -> Encoding
gencode x =
    collapsesum
    (czipWith3sum @(All Top)
        (\ (K a) (K i) encs ->
            K ( encodeListLen (a + 1)
            <> encodeWord i
            <> mconcat (collapse Product encs)
                )
            )
            (constructorArities @a)
            (constructorNumbers @a)
        (cmapsop @Serialise (\ (I y) -> K (encode y)) (from x))
    )
```


Staged generic encode

```
sgencode ::
    \forall a . (SGeneric a, All (All Serialise) (Description a))
    => Code (a -> Encoding)
sgencode =
    [|| \x -> $$(sfrom [|| x ||] $ \ x' ->
        collapse
            (czipWith3sum @(All Top)
            (\ (K a) (K i) encs -> let a' = a + 1 in
            K [|| encodeListLen a'
            <> encodeWord i
            <> $$(smconcat (collapse Product encs))
                II]
        )
        (constructorArities @a)
        (constructorNumbers @a)
        (cmapsop @Serialise
            (\ (Code y) -> K [|| encode $$y ||]) x')
        )
) II]
```


Missing function

```
smconcat :: Monoid a => [Code a] -> Code a
smconcat [] = [|| mempty ||]
smconcat [x] = x
smconcat (x : xs) = [|| $$x <> $$(smconcat xs) ||]
```


Status

What (also) works

Implementing other staged generic functions:

- Deriving lenses (getters and setters).
- Generic equality and comparison.

Current limitations

data IntList = IntCons Int IntList | IntNil
instance Serialise IntList where

encode = \$\$(sgencode @IntList)

GHC stage restriction: instance for 'Serialise IntList 'is used in a top-level splice [...] and must be imported, not defined locally

Current limitations

data IntList = IntCons Int IntList | IntNil
instance Serialise IntList where
encode = \$\$(sgencode @IntList)

GHC stage restriction: instance for 'Serialise IntList ' is used in a top-level splice [...] and must be imported, not defined locally
data Option a = None | Some a
instance Serialise (Option a) where
encode = \$\$(sgencode @(Option a))

No instance for (Serialise a) arising from a use of'sgencode '

Open questions

Are the conversion functions sfrom and sto sufficient?
E.g. quadratic code size for generic equality.

Open questions

Are the conversion functions sfrom and sto sufficient?
E.g. quadratic code size for generic equality.

Can we transfer all the other known techniques from staging SYB (Yallop)?

