
[Faculty of Science
Information and Computing Sciences]

Generic programming with fixed points
for mutually recursive datatypes

Andres Löh

joint work with Alexey Rodriguez, Stefan Holdermans, Johan Jeuring

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
Web pages: http://www.cs.uu.nl/wiki/Center

September 2, 2009

http://www.cs.uu.nl/wiki/Center

[Faculty of Science
Information and Computing Sciences]

2

Datatype-generic programming

I Write functions that depend on the structure of datatypes.

I Equality, parsing, . . .

I Traversing data structures, collecting or modifying items.

I Type-indexed data types: tries, zippers.

[Faculty of Science
Information and Computing Sciences]

3

This talk

I Yet another (datatype-)generic programming library for
Haskell.

I Gives you access to recursive positions, i.e., it is easy to
write a generic fold/catamorphism.

I Allows you to define type-indexed datatypes, e.g., zippers.

I Applicable to a large class of datatypes, in particular
mutually recursive datatypes.

[Faculty of Science
Information and Computing Sciences]

3

This talk

I Yet another (datatype-)generic programming library for
Haskell.

I Gives you access to recursive positions, i.e., it is easy to
write a generic fold/catamorphism.

I Allows you to define type-indexed datatypes, e.g., zippers.

I Applicable to a large class of datatypes, in particular
mutually recursive datatypes.

[Faculty of Science
Information and Computing Sciences]

4

What is in a generic programming library?

I Represent datatypes generically.

I Map between user types and their representations.

I Define functions based on representations.

We focus on the first: generic view or universe.

[Faculty of Science
Information and Computing Sciences]

4

What is in a generic programming library?

I Represent datatypes generically.

I Map between user types and their representations.

I Define functions based on representations.

We focus on the first: generic view or universe.

[Faculty of Science
Information and Computing Sciences]

5

PolyP (Jansson and Jeuring 1997)

The first approach to generic programming in Haskell:

I Datatypes are represented as fixed points of sums of
products.

[Faculty of Science
Information and Computing Sciences]

6

Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

ExprF e = Val
| e e e

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))

[Faculty of Science
Information and Computing Sciences]

6

Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

data ExprF e = ConstF Val
| IfF e e e

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))

[Faculty of Science
Information and Computing Sciences]

6

Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

type ExprF e = Val
| e e e

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))

[Faculty of Science
Information and Computing Sciences]

6

Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

type ExprF e = Val
+ e e e

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))

[Faculty of Science
Information and Computing Sciences]

6

Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

type ExprF e = Val
+ e × e × e

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))

[Faculty of Science
Information and Computing Sciences]

6

Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

type ExprF = K Val
:+: I :×: I :×: I

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))

[Faculty of Science
Information and Computing Sciences]

7

Combinators

data I r = I r
data K a r = K a
data U r = U -- for constructors with no arguments
data (f :+: g) r = L (f r) | R (g r)
data (f :×: g) r = f r :×: g r

Functors are of kind ∗→ ∗.

data Fix (f :: ∗→ ∗) = In (f (Fix f))

[Faculty of Science
Information and Computing Sciences]

8

Writing a generic function

class Functor f where
fmap :: (a→ b)→ f a→ f b

instance Functor (K a) where
fmap f (K x) = K x

instance Functor I where
fmap f (I x) = I (f x)

-- instances for the other functor combinators

fold :: Functor f⇒ (f r→ r)→ Fix f→ r
fold alg (In f) = alg (fmap (fold alg) f)

[Faculty of Science
Information and Computing Sciences]

8

Writing a generic function

class Functor f where
fmap :: (a→ b)→ f a→ f b

instance Functor (K a) where
fmap f (K x) = K x

instance Functor I where
fmap f (I x) = I (f x)

-- instances for the other functor combinators

fold :: Functor f⇒ (f r→ r)→ Fix f→ r
fold alg (In f) = alg (fmap (fold alg) f)

[Faculty of Science
Information and Computing Sciences]

9

Summary of workflow

I Use a limited set of combinators to build functors (library).

I Express datatypes as fixed points of functors (user or
Template Haskell).

I Express the equivalence using a pair of conversion
functions (user or Template Haskell).

I Define functions (and datatypes) on the structure of
functors (library).

I Enjoy generic functions on all the represented datatypes
(user).

[Faculty of Science
Information and Computing Sciences]

10

Limitation of the PolyP approach

Only regular datatypes can be represented.

data Expr = Const Val
| If Expr Expr Expr

| Bin Expr Op Expr

data Op = Add | Mul | Infix Expr | Flip Op

Typical ASTs are not regular, but a family of several mutually
recursive datatypes.

[Faculty of Science
Information and Computing Sciences]

10

Limitation of the PolyP approach

Only regular datatypes can be represented.

data Expr = Const Val
| If Expr Expr Expr
| Bin Expr Op Expr

data Op = Add | Mul | Infix Expr | Flip Op

Typical ASTs are not regular, but a family of several mutually
recursive datatypes.

[Faculty of Science
Information and Computing Sciences]

10

Limitation of the PolyP approach

Only regular datatypes can be represented.

data Expr = Const Val
| If Expr Expr Expr
| Bin Expr Op Expr

data Op = Add | Mul | Infix Expr | Flip Op

Typical ASTs are not regular, but a family of several mutually
recursive datatypes.

[Faculty of Science
Information and Computing Sciences]

10

Limitation of the PolyP approach

Only regular datatypes can be represented.

data Expr = Const Val
| If Expr Expr Expr
| Bin Expr Op Expr

data Op = Add | Mul | Infix Expr | Flip Op

Typical ASTs are not regular, but a family of several mutually
recursive datatypes.

[Faculty of Science
Information and Computing Sciences]

11

Classic attempts

data Expr = Const Val
| If Expr Expr Expr

data ExprF e = ConstF Val
| IfF e e e

type Expr′ = Fix ExprF

[Faculty of Science
Information and Computing Sciences]

11

Classic attempts

data Expr = Const Val
| If Expr Expr Expr
| Bin Expr Op Expr

data Op = Add | Mul | Infix Expr | Flip Op

data ExprF e o = ConstF Val
| IfF e e e
| BinF e o e

data OpF e o = AddF | MulF | InfixF e | FlipF o

type Expr′ = Fix2,0 ExprF OpF
type Op′ = Fix2,1 ExprF OpF

[Faculty of Science
Information and Computing Sciences]

12

Kinds

Fix :: (∗→ ∗)→∗

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

Fix3,0 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,1 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,2 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗

. . .

[Faculty of Science
Information and Computing Sciences]

12

Kinds

Fix :: (∗→ ∗)→∗

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

Fix3,0 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,1 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,2 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗

. . .

[Faculty of Science
Information and Computing Sciences]

12

Kinds

Fix :: (∗→ ∗)→∗

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

Fix3,0 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,1 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,2 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗

. . .

[Faculty of Science
Information and Computing Sciences]

12

Kinds

Fix :: (∗→ ∗)→∗

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

Fix3,0 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,1 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,2 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗

. . .

[Faculty of Science
Information and Computing Sciences]

13

Kinds (contd.)

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

If we had tuples on the kind level:

Fix2 :: (∗2→∗)2→∗2

And if we had numbers as kinds:

Fix2 :: ((2→∗)→ (2→∗))→ (2→∗)

And this can be generalized:

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)

[Faculty of Science
Information and Computing Sciences]

13

Kinds (contd.)

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

If we had tuples on the kind level:

Fix2 :: (∗2→∗)2→∗2

And if we had numbers as kinds:

Fix2 :: ((2→∗)→ (2→∗))→ (2→∗)

And this can be generalized:

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)

[Faculty of Science
Information and Computing Sciences]

13

Kinds (contd.)

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

If we had tuples on the kind level:

Fix2 :: (∗2→∗)2→∗2

And if we had numbers as kinds:

Fix2 :: ((2→∗)→ (2→∗))→ (2→∗)

And this can be generalized:

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)

[Faculty of Science
Information and Computing Sciences]

13

Kinds (contd.)

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

If we had tuples on the kind level:

Fix2 :: (∗2→∗)2→∗2

And if we had numbers as kinds:

Fix2 :: ((2→∗)→ (2→∗))→ (2→∗)

And this can be generalized:

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)

[Faculty of Science
Information and Computing Sciences]

14

One fixed point combinator

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)

Can we express n in Haskell?

Yes!

[Faculty of Science
Information and Computing Sciences]

14

One fixed point combinator

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)

Can we express n in Haskell?

Yes!

[Faculty of Science
Information and Computing Sciences]

15

Encoding kind n

I Choose ∗ rather than n.

I Ensure that wherever ∗ is used instead of n, we only
instantiate it with one of n different types – the types that
make up our family.

I Where necessary, provide additional evidence (in the form
of a GADT) that the type is actually one of only n
different possibilities.

∀ix :: n. . . .

becomes

∀ix :: ∗.Fam ix→ . . .

[Faculty of Science
Information and Computing Sciences]

15

Encoding kind n

I Choose ∗ rather than n.

I Ensure that wherever ∗ is used instead of n, we only
instantiate it with one of n different types – the types that
make up our family.

I Where necessary, provide additional evidence (in the form
of a GADT) that the type is actually one of only n
different possibilities.

∀ix :: n. . . .

becomes

∀ix :: ∗.Fam ix→ . . .

[Faculty of Science
Information and Computing Sciences]

15

Encoding kind n

I Choose ∗ rather than n.

I Ensure that wherever ∗ is used instead of n, we only
instantiate it with one of n different types – the types that
make up our family.

I Where necessary, provide additional evidence (in the form
of a GADT) that the type is actually one of only n
different possibilities.

∀ix :: n. . . .

becomes

∀ix :: ∗.Fam ix→ . . .

[Faculty of Science
Information and Computing Sciences]

15

Encoding kind n

I Choose ∗ rather than n.

I Ensure that wherever ∗ is used instead of n, we only
instantiate it with one of n different types – the types that
make up our family.

I Where necessary, provide additional evidence (in the form
of a GADT) that the type is actually one of only n
different possibilities.

∀ix :: n. . . .

becomes

∀ix :: ∗.Fam ix→ . . .

[Faculty of Science
Information and Computing Sciences]

16

Example index GADT

data Fam :: ∗→ ∗ where
Expr :: Fam Expr
Op :: Fam Op

A value of Fam t encodes a proof that t is either Expr or Op.

[Faculty of Science
Information and Computing Sciences]

17

Representing a family

data ExprF e o =
ConstF Val

| IfF e e e
| BinF e o e

data OpF e o =
AddF | MulF | InfixF e | FlipF o

data FamF (r :: ∗ → ∗) (ix :: ∗) where
ExprF :: ExprF r Expr → FamF r Expr

| OpF :: OpF r Op → FamF r Op

type Expr′ = Fix FamF Expr
type Op′ = Fix FamF Op

[Faculty of Science
Information and Computing Sciences]

17

Representing a family

data ExprF (r :: ∗ → ∗) (ix :: ∗) =
ConstF Val

| IfF (r Expr) (r Expr) (r Expr)
| BinF (r Expr) (r Op) (r Expr)

data OpF (r :: ∗ → ∗) (ix :: ∗) =
AddF | MulF | InfixF (r Expr) | FlipF (r Op)

data FamF (r :: ∗ → ∗) (ix :: ∗) where
ExprF :: ExprF r Expr → FamF r Expr

| OpF :: OpF r Op → FamF r Op

type Expr′ = Fix FamF Expr
type Op′ = Fix FamF Op

[Faculty of Science
Information and Computing Sciences]

17

Representing a family

data ExprF (r :: ∗ → ∗) (ix :: ∗) =
ConstF Val

| IfF (r Expr) (r Expr) (r Expr)
| BinF (r Expr) (r Op) (r Expr)

data OpF (r :: ∗ → ∗) (ix :: ∗) =
AddF | MulF | InfixF (r Expr) | FlipF (r Op)

data FamF (r :: ∗ → ∗) (ix :: ∗) where
ExprF :: ExprF r Expr → FamF r Expr

| OpF :: OpF r Op → FamF r Op

type Expr′ = Fix FamF Expr
type Op′ = Fix FamF Op

[Faculty of Science
Information and Computing Sciences]

17

Representing a family

type ExprF =
K Val

:+: I Expr :×: I Expr :×: I Expr
:+: I Expr :×: I Op :×: I Expr

type OpF =
U :+: U :+: I Expr :+: I Op

data FamF (r :: ∗ → ∗) (ix :: ∗) where
ExprF :: ExprF r Expr → FamF r Expr

| OpF :: OpF r Op → FamF r Op

type Expr′ = Fix FamF Expr
type Op′ = Fix FamF Op

[Faculty of Science
Information and Computing Sciences]

17

Representing a family

type ExprF =
K Val

:+: I Expr :×: I Expr :×: I Expr
:+: I Expr :×: I Op :×: I Expr

type OpF =
U :+: U :+: I Expr :+: I Op

type FamF =
ExprF :. : Expr

:+: OpF :. : Op

type Expr′ = Fix FamF Expr
type Op′ = Fix FamF Op

[Faculty of Science
Information and Computing Sciences]

18

Combinators for functors

Recursing on a particular index

data I (ix′ :: ∗) (r :: ∗→ ∗) (ix :: ∗) = I (r ix′)

Selecting a particular index

data (f :. : ix′) (r :: ∗→ ∗) (ix :: ∗) where
Tag :: f r ix′→ (f :. : ix′) r ix′

[Faculty of Science
Information and Computing Sciences]

19

Generalizing Functor

class HFunctor fam (f :: (∗→ ∗)→∗→ ∗) where
hmap :: ∀r r′.

(∀ix.fam ix→ r ix→ r′ ix)→
(∀ix.fam ix→ f r ix→ f r′ ix)

fold :: ∀fam f r.HFunctor fam f⇒
(∀ix.fam ix→ f r ix → r ix)→
(∀ix.fam ix→ Fix f ix→ r ix)

[Faculty of Science
Information and Computing Sciences]

19

Generalizing Functor

class HFunctor fam (f :: (∗→ ∗)→∗→ ∗) where
hmap :: ∀r r′.

(∀ix.fam ix→ r ix→ r′ ix)→
(∀ix.fam ix→ f r ix→ f r′ ix)

fold :: ∀fam f r.HFunctor fam f⇒
(∀ix.fam ix→ f r ix → r ix)→
(∀ix.fam ix→ Fix f ix→ r ix)

[Faculty of Science
Information and Computing Sciences]

20

In the paper or the library

Details

I Conversion between original family and representation.

I Generic function code.

Applications

I Variants of folds.

I Classic examples: show, equality.

I Type-indexed datatypes: the zipper.

I Generic rewriting.

[Faculty of Science
Information and Computing Sciences]

20

In the paper or the library

Details

I Conversion between original family and representation.

I Generic function code.

Applications

I Variants of folds.

I Classic examples: show, equality.

I Type-indexed datatypes: the zipper.

I Generic rewriting.

[Faculty of Science
Information and Computing Sciences]

21

Try it

On Hackage

multirec – library described in the paper

zipper – generic zippers based on multirec

regular – single-datatype version of the library

