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Datatype-generic programming

I Write functions that depend on the structure of datatypes.

I Equality, parsing, . . .

I Traversing data structures, collecting or modifying items.

I Type-indexed data types: tries, zippers.
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This talk

I Yet another (datatype-)generic programming library for
Haskell.

I Gives you access to recursive positions, i.e., it is easy to
write a generic fold/catamorphism.

I Allows you to define type-indexed datatypes, e.g., zippers.

I Applicable to a large class of datatypes, in particular
mutually recursive datatypes.



[Faculty of Science
Information and Computing Sciences]

3

This talk

I Yet another (datatype-)generic programming library for
Haskell.

I Gives you access to recursive positions, i.e., it is easy to
write a generic fold/catamorphism.

I Allows you to define type-indexed datatypes, e.g., zippers.

I Applicable to a large class of datatypes, in particular
mutually recursive datatypes.



[Faculty of Science
Information and Computing Sciences]

4

What is in a generic programming library?

I Represent datatypes generically.

I Map between user types and their representations.

I Define functions based on representations.

We focus on the first: generic view or universe.
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PolyP (Jansson and Jeuring 1997)

The first approach to generic programming in Haskell:

I Datatypes are represented as fixed points of sums of
products.
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Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

ExprF e = Val
| e e e

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))
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Example

data Expr = Const Val
| If Expr Expr Expr

As a functor:

type ExprF = K Val
:+: I :×: I :×: I

type Expr′ = Fix ExprF

data Fix f = In (f (Fix f))
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Combinators

data I r = I r
data K a r = K a
data U r = U -- for constructors with no arguments
data (f :+: g) r = L (f r) | R (g r)
data (f :×: g) r = f r :×: g r

Functors are of kind ∗→ ∗.

data Fix (f :: ∗→ ∗) = In (f (Fix f))
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Writing a generic function

class Functor f where
fmap :: (a→ b)→ f a→ f b

instance Functor (K a) where
fmap f (K x) = K x

instance Functor I where
fmap f (I x) = I (f x)

-- instances for the other functor combinators

fold :: Functor f⇒ (f r→ r)→ Fix f→ r
fold alg (In f) = alg (fmap (fold alg) f)
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Summary of workflow

I Use a limited set of combinators to build functors (library).

I Express datatypes as fixed points of functors (user or
Template Haskell).

I Express the equivalence using a pair of conversion
functions (user or Template Haskell).

I Define functions (and datatypes) on the structure of
functors (library).

I Enjoy generic functions on all the represented datatypes
(user).
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Limitation of the PolyP approach

Only regular datatypes can be represented.

data Expr = Const Val
| If Expr Expr Expr

| Bin Expr Op Expr

data Op = Add | Mul | Infix Expr | Flip Op

Typical ASTs are not regular, but a family of several mutually
recursive datatypes.
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Classic attempts

data Expr = Const Val
| If Expr Expr Expr

data ExprF e = ConstF Val
| IfF e e e

type Expr′ = Fix ExprF
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Classic attempts

data Expr = Const Val
| If Expr Expr Expr
| Bin Expr Op Expr

data Op = Add | Mul | Infix Expr | Flip Op

data ExprF e o = ConstF Val
| IfF e e e
| BinF e o e

data OpF e o = AddF | MulF | InfixF e | FlipF o

type Expr′ = Fix2,0 ExprF OpF
type Op′ = Fix2,1 ExprF OpF
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Kinds

Fix :: (∗→ ∗)→∗

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

Fix3,0 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,1 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗
Fix3,2 :: (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→ (∗→ ∗→ ∗→ ∗)→∗

. . .
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Kinds (contd.)

Fix2,0 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗
Fix2,1 :: (∗→ ∗→ ∗)→ (∗→ ∗→ ∗)→∗

If we had tuples on the kind level:

Fix2 :: (∗2→∗)2→∗2

And if we had numbers as kinds:

Fix2 :: ((2→∗)→ (2→∗))→ (2→∗)

And this can be generalized:

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)
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One fixed point combinator

Fixn :: ((n→∗)→ (n→∗))→ (n→∗)

Can we express n in Haskell?

Yes!
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Encoding kind n

I Choose ∗ rather than n.

I Ensure that wherever ∗ is used instead of n, we only
instantiate it with one of n different types – the types that
make up our family.

I Where necessary, provide additional evidence (in the form
of a GADT) that the type is actually one of only n
different possibilities.

∀ix :: n. . . .

becomes

∀ix :: ∗.Fam ix→ . . .
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Example index GADT

data Fam :: ∗→ ∗ where
Expr :: Fam Expr
Op :: Fam Op

A value of Fam t encodes a proof that t is either Expr or Op.
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Representing a family

data ExprF e o =
ConstF Val

| IfF e e e
| BinF e o e

data OpF e o =
AddF | MulF | InfixF e | FlipF o

data FamF (r :: ∗ → ∗) (ix :: ∗) where
ExprF :: ExprF r Expr → FamF r Expr

| OpF :: OpF r Op → FamF r Op

type Expr′ = Fix FamF Expr
type Op′ = Fix FamF Op
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Combinators for functors

Recursing on a particular index

data I (ix′ :: ∗) (r :: ∗→ ∗) (ix :: ∗) = I (r ix′)

Selecting a particular index

data (f :. : ix′) (r :: ∗→ ∗) (ix :: ∗) where
Tag :: f r ix′→ (f :. : ix′) r ix′
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Generalizing Functor

class HFunctor fam (f :: (∗→ ∗)→∗→ ∗) where
hmap :: ∀r r′.

(∀ix.fam ix→ r ix→ r′ ix)→
(∀ix.fam ix→ f r ix→ f r′ ix)

fold :: ∀fam f r.HFunctor fam f⇒
(∀ix.fam ix→ f r ix → r ix)→
(∀ix.fam ix→ Fix f ix→ r ix)
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In the paper or the library

Details

I Conversion between original family and representation.

I Generic function code.

Applications

I Variants of folds.

I Classic examples: show, equality.

I Type-indexed datatypes: the zipper.

I Generic rewriting.
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Try it

On Hackage

multirec – library described in the paper

zipper – generic zippers based on multirec

regular – single-datatype version of the library


