
Typesetting Haskell and more
with lhs2TeX

Andres Löh
Universiteit Utrecht
andres@cs.uu.nl

September 8, 2004

About lhs2TeX

Ù lhs2TeX is a preprocessor
– Input: a literate Haskell source file
– Output: a formatted file, depending on style of operation

Ù Possible input:

\documentclass{article}

%include lhs2TeX.fmt

%include lhs2TeX.sty

\begin{document}

This is the famous ‘‘Hello world’’ example,

written in Haskell:

\begin{code}

main :: IO ()

main = putStrLn "Hello, world!"

\end{code}

\end{document}

Hello, world!

Ù lhs2TeX is a preprocessor
– Input: a literate Haskell source file
– Output: a formatted file, depending on selected style

Ù Possible output:

This is the famous “Hello world” example, written in Haskell:

main :: IO ()
main = putStrLn "Hello, world!"

Ù From input to output:

$ lhs2TeX --poly HelloWorld.lhs > HelloWorld.tex

$ pdflatex HelloWorld.tex

Styles

Ù lhs2TeX has several styles with different behaviour:
– verb (verbatim): format code completely verbatim
– tt (typewriter): format code verbatim, but allow special

formatting of keywords, characters, some functions, . . .
– math: mathematical formatting with basic alignment,

highly customizable
– poly: mathematical formatting with mutliple alignments,

highly customizable, supersedes math
– code: delete all comments, extract sourcecode
– newcode (new code): delete all comments, extract

sourcecode, but allow for formatting, supersedes code

Example of “verb” style

zip :: [a] -> [b] -> [(a,b)]

zip = zipWith (\a b -> (a,b))

zipWith :: (a->b->c) -> [a]->[b]->[c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

partition :: (a -> Bool) -> [a] -> ([a],[a])

partition p xs = foldr select ([],[]) xs

where select x (ts,fs) | p x = (x:ts,fs)

| otherwise = (ts,x:fs)

Example of “tt” style

zip :: [a] → [b] → [(a,b)]

zip = zipWith (λa b → (a,b))

zipWith :: (a→b→c) → [a]→[b]→[c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

partition :: (a → Bool) → [a] → ([a],[a])

partition p xs = foldr select ([],[]) xs

where select x (ts,fs) | p x = (x:ts,fs)

| otherwise = (ts,x:fs)

Differences from verb style:
Ù Some of Haskells symbols can be expressed more naturally.
Ù Keywords can be highlighted.

Drawback of formatting

zip :: [a] → [b] → [(a, b)]
zip = zipWith (λa b → (a, b))
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith z (a : as) (b : bs) = z a b : zipWith z as bs
zipWith = []
partition :: (a → Bool) → [a] → ([a], [a])
partition p xs = foldr select ([], []) xs

where select x (ts, fs) | p x = (x : ts, fs)
| otherwise = (ts, x : fs)

Ù Alignment information is lost.

Example of “math” style

zip :: [a] → [b] → [(a, b)]
zip = zipWith (λa b → (a, b))
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith z (a : as) (b : bs) = z a b : zipWith z as bs
zipWith = []
partition :: (a → Bool) → [a] → ([a], [a])
partition p xs = foldr select ([], []) xs

where select x (ts, fs) | p x = (x : ts, fs)
| otherwise = (ts, x : fs)

Ù Only one alignment column, plus indentation.

Example of “poly” style

zip :: [a] → [b] → [(a, b)]
zip = zipWith (λa b → (a, b))
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith z (a : as) (b : bs) = z a b : zipWith z as bs
zipWith = []
partition :: (a → Bool) → [a] → ([a], [a])
partition p xs = foldr select ([], []) xs

where select x (ts, fs) | p x = (x : ts, fs)
| otherwise = (ts, x : fs)

Ù Complex layouts are possible.

History of lhs2TeX

Ù Ralf Hinze started development in 1997. Most of the hard
work has been done by him!

Ù The program is based on smugweb and pphs, both of which are
no longer available and I do not know.

Ù I picked up development in 2002, and added the poly and
newcode styles.

lhs2TeX operation

Ù When given an input file, lhs2TeX does only look at the
following constructs:

– Directives.
– Text between two @ characters. Such text is considered

inline verbatim. Any @ in the source file needs to be
escaped: @@.

– Text between two | characters. Such text is considered
inline code.

– Lines indicating a Bird-style literate program (i.e. lines
beginning with either > or <) are considered as code
blocks.

– Lines surrounded by \begin{code} and \end{code}
statements, or by \begin{spec} and \end{spec}
statements, are considered as code blocks.

Ù Everything else is considered plain text and either ignored (for
verb, tt, math, and poly) or discarded (for code and newcode).

Directives

Ù lhs2TeX interprets a number of directives.
Ù Directives can occur on all non-code lines and start with a %,

the TEX comment character, immediately followed by the name
of the directive, plus a list of potential arguments.

Ù These are the directives we will learn about in this talk:
%include

%format

%{

%}

%let

%if

%else

%elif

%endif

%latency

%separation

%options

Including files

Ù Other files can be included by lhs2TeX.

%include 〈filename〉

Ù Using %include, not only other sources, but also other
directives can be included.

Ù The specified file is searched for in the lhs2TeX source path
which can be modified using environment variables or the -P
command line option.

Ù Included files are inserted literally at the position of the
%include directive. The lhs2TeX inclusion is therefore entirely
independent of TEX or Haskell includes/imports.

The lhs2TeX “prelude”

Ù Several aspects of the behaviour of lhs2TeX are not hardcoded,
but configurable via directives.

Ù A minimal amount of functionality has to be defined so that
lhs2TeX can operate usefully.

Ù Essential definitions are collected in two files, lhs2TeX.fmt
(containing basic directives) and lhs2TeX.sty (containing
basic LATEX setup). These two files should be included –
directly or indirectly – in every file to be processed by lhs2TeX!

%include lhs2TeX.fmt

%include lhs2TeX.sty

Ù It is perfectly possible to design own libraries that replace or
extend these basic files and to include those own libraries
instead.

Formatting

Ù Using the %format directive, tokens can be given a different
appearance.

%format 〈token〉 = 〈fmttoken〉∗ (format single tokens)
%format 〈lhs〉 = 〈fmttoken〉∗ (parametrized formatting)
%format 〈name〉 (implicit formatting)

〈lhs〉 ::= 〈name〉 〈arg〉∗ | (〈name〉) 〈arg〉∗
〈name〉 ::= 〈varname〉 | 〈conname〉
〈arg〉 ::= 〈varname〉 | (〈varname〉)
〈fmttoken〉 ::= "〈text〉" | 〈token〉

Ù Let us look at a couple of examples.

Formatting identifiers

Ù Input:

%format alpha = "\alpha"

\begin{code}

tan alpha = sin alpha / cos alpha

\end{code}

Ù Output:

tan α = sin α / cos α

Parametrized formatting directives

Ù Formatting directives can be parametrized. The parameters
may occur once or more on the right hand side.

Ù Input:

%format abs (a) = "\mathopen{|}" a "\mathclose{|}"

%format ~> = "\leadsto"

The |abs| function computes the absolute value of

an integer:

\begin{code}

abs(-2) ~> 2

\end{code}

Ù Output:

The |·| function computes the absolute value of an integer:

|−2| 2

Parentheses

Ù Sometimes, due to formatting, parentheses around arguments
or the entire function become unnecessary.

Ù Therefore, lhs2TeX can be instructed to drop parentheses
around an argument by enclosing the argument on the left
hand side of the directive in parentheses.

Ù Parentheses around the entire function are dropped if the
entire left hand side of the directive is enclosed in parentheses.

Parentheses – example

Ù Input:

%format ^^ = "\;"

%format (ptest (a) b (c)) = ptest ^^ a ^^ b ^^ c

\begin{code}

ptest a b c

(ptest (a) (b) (c))

((ptest((a)) ((b)) ((c))))

\end{code}

Ù Output:

ptest a b c
ptest a (b) c
(ptest (a) ((b)) (c))

Parentheses – example

Ù Input:

%format eval a = "\llbracket " a "\rrbracket "

\begin{code}

size (eval (2 + 2))

\end{code}

%format (eval (a)) = "\llbracket " a "\rrbracket "

\begin{code}

size (eval (2 + 2))

\end{code}

Ù Output:

size (J(2 + 2)K)
size J2 + 2K

Local formatting directives

Ù Usually, formatting directives scope over the rest of the input.
Ù Formatting directives can be placed into groups.

%{

. . .
%}

Ù Formatting directives that are defined in a group scope only
over the rest of the current group.

Local formatting directives – example

Ù Input:

In the beginning: |one|.\par

%format one = "\mathsf{1}"

Before the group: |one|.\par

%{

%format one = "\mathsf{one}"

Inside the group: |one|.\par

%}

After the group: |one|.

Ù Output:

In the beginning: one.
Before the group: 1.
Inside the group: one.
After the group: 1.

Nested applications of formatting directives

The right-hand sides of formatting directives are processed as
follows:

Ù A string, enclosed in ", will be reproduced literally (without
the quotes).

Ù A name, if it is the name of a parameter, will be replaced by the
actual (formatted) argument.

Ù A name, if it is the name of a non-parametrized formatting
directive, will be replaced by that directive’s replacement.

Ù Any other name will be replaced by its standard formatting.

Implicit formatting

Ù A variable (or constructor) name that ends in a number or a
prime ’ can be used in an implicit formatting statement.

Ù The prefix will be formatted as determined by the formatting
directives in the input so far. The number will be added as an
index, the prime character as itself.

Implicit formatting – example

Ù Input:

%format omega = "\omega"

|[omega, omega13, omega13’]|\par

%format omega13

|[omega, omega13, omega13’]|\par

%format omega13’

|[omega, omega13, omega13’]|

Ù Output:

[ω, omega13, omega13′]
[ω, ω13, omega13′]
[ω, ω13, ω′

13]

Formatting in the various styles

Ù Formatting directives are applied in math, poly, and newcode
styles.

Ù In tt style, only non-parametrized apply.
Ù In verb and code styles, formatting directives are ignored.

Alignment in “poly” style

Ù Alignment is computed per code block.
Ù All tokens that start on the same column and are preceded by

at least 2 spaces are horizontally aligned in the output.
Ù (Almost) everything is possible, but watch out for accidental

alignments!

Alignment example

Ù Input:

> rep_alg = (\ _ −> \m −> Leaf m

> ,\ lfun rfun −> \m −> let lt = lfun m

> rt = rfun m

> in Bin lt rt

>)

> replace_min’ t = (cata_Tree rep_alg t) (cata_Tree min_alg t)

Ù The red lt is not aligned (only one preceding space).
Ù Output:

rep alg = (λ → λm → Leaf m
, λlfun rfun → λm → let lt = lfun m

rt = rfun m
in Bin lt rt

)
replace min′ t = (cata Tree rep alg t) (cata Tree min alg t)

Accidental alignment example – input

%format <| = "\lhd "

> options :: [String] −> ([Class],[String])

> options = foldr (<|) ([],[])

> where "−align" <| (ds,s: as) = (Dir Align s : ds, as)

> (’−’:’i’:s) <| (ds, as) = (Dir Include s : ds, as)

> (’−’:’l’:s) <| (ds, as) = (Dir Let s : ds, as)

> s <| (ds, as) = (ds,s : as)

Ù The red items will be unintentionally aligned because they
start on the same column, with two or more preceding spaces
each.

Ù To correct, insert extra spaces to ensure that unrelated tokens
start on different columns.

Accidental alignment example – continued

Ù Output:

options :: [String] → ([Class], [String])
options = foldr (C) ([], [])

where "-align" C (ds, s : as) = (Dir Align s : ds, as)
(’-’ : ’i’ : s)C (ds, as) = (Dir Include s : ds, as)
(’-’ : ’l’ : s)C (ds, as) = (Dir Let s : ds, as)
s C (ds, as) = (ds, s : as)

Ù Corrected version:
options :: [String] → ([Class], [String])
options = foldr (C) ([], [])

where "-align" C (ds, s : as) = (Dir Align s : ds, as)
(’-’ : ’i’ : s)C (ds, as) = (Dir Include s : ds, as)
(’-’ : ’l’ : s)C (ds, as) = (Dir Let s : ds, as)
s C (ds, as) = (ds, s : as)

Indentation in “poly” style

Ù If a line is indented in column n, then the previous code line is
taken into account:

– If there is an aligned token at column n in the previous
line, then the indented line will be aligned normally.

– Otherwise, the line will be indendet with respect to the
first aligned token in the previous line to the left of
column n.

Indentation in “poly” style – example

Ù Input:

unionBy :: (a −> a −> Bool) −> [a] −> [a] −> [a]

unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

Ù Output:

unionBy :: (a → a → Bool) → [a] → [a] → [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

Ù In this example, there is an aligned token in the previous line
at the same column, so everything is normal.

Indentation in “poly” style – example

Ù Input:

unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

Ù Output:

unionBy :: (a → a → Bool) → [a] → [a] → [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq))

(nubBy eq ys)

Ù In this example, there is no aligned token in the previous line
at the same column. Therefore, the third line is indented with
respect to the first aligned token in the previous line to the left
of that column.

Indentation in “poly” style – example

Ù Input:

%format foo = verylongfoo

\begin{code}

test 1

foo bar

2

\end{code}

Ù Output:

test 1
verylongfoo bar

2

Ù In rare cases, the indentation heuristic can lead to surprising
results. Here, the 1 is aligned with the 2, but 2 is also indented
with respect to bar.

Advanced alignment topics

Ù Some columns (containing symbols) are centered by lhs2TeX
(all other columns are left-aligned).

Ù It is possible redefine the alignment of a specific column.
Ù It is possible to customize the output environment (using

%subst directives). Using this, one can produce effects such as
putting all code blocks into yellow boxes.

Ù It is possible to save (and restore) column information.

Saving and restoring column information
example – input

\savecolumns

\begin{code}

intersperse :: a -> [a] -> [a]

intersperse _ [] = []

intersperse _ [x] = [x]

\end{code}

The only really interesting case is the one for lists

containing at least two elements:

\restorecolumns

\begin{code}

intersperse sep (x:xs) = x : sep : intersperse sep xs

\end{code}

Saving and restoring column information
example – output

intersperse :: a → [a] → [a]
intersperse [] = []
intersperse [x] = [x]

The only really interesting case is the one for lists containing at least
two elements:

intersperse sep (x : xs) = x : sep : intersperse sep xs

Spacing

Ù lhs2TeX does not really have a Haskell parser.
Ù Because of this, it can be used for dialects of Haskell, too!
Ù Spacing is handled automatically so that it works for correctly

for pure Haskell most of the time.
Ù A good trick is to define the following two pseudo-operators to

correct wrong automatic spacing:

%format ^ = " "

%format ^^ = "\;"

– Use ^ where you do not want a space, but lhs2TeX would
place one.

– Use ^^ where you do want a space, but lhs2TeX does not
place one.

AG code example – input

%format ^ = " "
%format ^^ = "\;"
%format ATTR = "\mathbf{ATTR}"
%format SEM = "\mathbf{SEM}"
%format lhs = "\mathbf{lhs}"
%format . = "."
%format * = "\times "
\begin{code}
ATTR Expr Factor [^^ | ^^ | numvars : Int]
ATTR Expr Factor [^^ | ^^ | value : Int]

SEM Expr
| Sum

lhs . value = @left.value + @right.value
. numvars = @left.numvars + @right.numvars

SEM Factor
| Prod

lhs . value = @left.value * @right.value
. numvars = @left.numvars + @right.numvars

\end{code}

AG code example – output

ATTR Expr Factor [| | numvars : Int]
ATTR Expr Factor [| | value : Int]
SEM Expr

| Sum
lhs.value = @left.value + @right.value

.numvars = @left.numvars + @right.numvars
SEM Factor

| Prod
lhs.value = @left.value × @right.value

.numvars = @left.numvars + @right.numvars

Calculation example – input
\def\commentbegin{\{\ }
\def\commentend{\}}
\begin{spec}

map (+1) [1,2,3]

== {- desugaring of |(:)| -}

map (+1) (1 : [2,3])

== {- definition of |map| -}

(+1) 1 : map (+1) [2,3]

== {- performing the addition on the head -}

2 : map (+1) [2,3]

== {- recursive application of |map| -}

2 : [3,4]

== {- list syntactic sugar -}

[2,3,4]
\end{spec}

Calculation example – output

map (+1) [1, 2, 3]
≡ { desugaring of (:) }

map (+1) (1 : [2, 3])
≡ { definition of map }

(+1) 1 : map (+1) [2, 3]
≡ { performing the addition on the head }

2 : map (+1) [2, 3]
≡ { recursive application of map }

2 : [3, 4]
≡ { list syntactic sugar }

[2, 3, 4]

Defining variables

Ù lhs2TeX allows flags (or variables) to be set by means of the
%let directive.

%let 〈varname〉 = 〈expression〉
〈expression〉 ::= 〈application〉 〈operator〉 〈application〉∗
〈application〉 ::= not? 〈atom〉
〈atom〉 ::= 〈varid〉 | True | False | 〈string〉 | 〈numeral〉 | (〈expression〉)
〈operator〉 ::= && | || | == | /= | < | <= | >= | > | ++ | + | - | * | /

Ù Expressions are built from booleans (either True or False),
integers, strings and previously define variables using some
predefined, Haskell-like operators.

Ù Variables can also be defined by using the -l or -s command
line options.

Ù lhs2TeX’s version is available as predefined version variable,
and the current style is available as predefined style variable.

Conditionals

Ù (Boolean) expressions can also be used in conditionals:

%if 〈expression〉
. . .
%elif 〈expression〉
. . .
%else

. . .
%endif

The %elif and %else directives are optional.
Ù Depending on the result of the evaluation of the expression,

only the then or the else part are processed by lhs2TeX.

Uses of conditionals

Ù Have different versions of one paper in one source. Depending
on a flag, produce either the one or the other. Because the flag
can be defined via a command line option, no modification of
the source is necessary to switch versions.

Ù Code that is needed to make the Haskell program work but
that should not appear in the formatted article (module
headers, auxiliary definitions), can be enclosed between
%if False and %endif directives, or:

Ù If Haskell code has to be annotated for lhs2TeX to produce the
right output, define different formatting directives for the
annotation depending on style (poly or newcode). Both code
and TEX file can then still be produced from a common source!

Calling ghci

Ù It is possible to call ghci (or hugs) using the %options
directive.

Ù lhs2TeX looks for calls to the TEX commands \eval and
\perform and feeds their arguments to the interpreter.

Ù The current input file will be the active module. Therefore, this
feature works only if the current file really is legal Haskell.

Calling ghci – example

Ù Input:

%options ghci -fglasgow-exts

> fix f = f (fix f)

This function is of type \eval{:t fix},

and |take 10 (fix (’x’:))|

evaluates to \eval{take 10 (fix (’x’:))}.

Ù Output:

fix :: ∀a.(a → a) → a
fix f = f (fix f)

This function is of type fix :: ∀a.(a → a) → a, and take 10 (fix (’x’:))
evaluates to "xxxxxxxxxx".

Implementation and distribution

Ù lhs2TeX is written in Haskell
Ù poly style makes use of a specifically written LATEX package

polytable, which is included in the distribution
Ù License is GPL.
Ù There has not been an official release for a long time, so get the

most recent version from the Subversion repository.
Ù It is reported to work on Linux, Mac OS X, and Windows.
Ù It has been used for several papers and seems to be quite

stable.

Future work

Ù More language independence (customizable lexer).
Ù Clean up (and extend) the formatting directives language.
Ù Allow directives during code blocks.
Ù Add more features to polytable package.
Ù . . .

Future development is relatively low priority, though. If you want it,
do it yourself or try to convince me that it is urgent!

