Hello HaskellX!

An Introduction to (10 in) Haskell

Andres L6h - Haskell eXchange 2022
2022-12-07 — Copyright © 2023 Well-Typed LLP

= Well-Typed

The Haskell Consultants

main = putStrLn "Hello HaskellX!"

= Well-Typed

main = putStrLn "Hello HaskellX!"

"Hello HaskellX!" :: String

= Well-Typed

main = putStrLn "Hello HaskellX!"

\

putStrLn :: ... > ...

"Hello HaskellX!" :: String

= Well-Typed

main = putStrLn "Hello HaskellX!"

\

putStrLn :: String -> ...

"Hello HaskellX!" :: String

= Well-Typed

main = putStrLn "Hello HaskellX!"

\

putStrLn :: String -> I0 ()

"Hello HaskellX!" :: String

= Well-Typed

main :: I0 ()

/

main = putStrLn "Hello HaskellX!"

\

putStrLn :: String -> I0 ()

"Hello HaskellX!" :: String

= Well-Typed

A conversation

main = do
putStrLn "Who are you?"
name <- getlLine
putStrLn ("Nice to meet you,

<> name)

= Well-Typed

A conversation

main = do
putStrLn "Who are you?"
name <- getlLine

putStrLn (”NiEe\ES\Tfet you, " <> name)

getlLine :: IO String

= Well-Typed

A conversation

main = do
putStrLn "Who are you?"
name <- getlLine

putﬁrm ("Niéweet you, " <> name)

name :: String getlLine :: IO String

= Well-Typed

A conversation

main = do
putStrLn "Who are you?"
name <- getlLine

putﬁrm ("Niéweet you, " <> name)

name :: String getlLine :: IO String

(<>) :: String -> String -> String

= Well-Typed

main = do
putStrLn "Who are you?"
putStrLn ("Nice to meet you, " <> getLine)

= Well-Typed

main = do
putStrLn "Who are you?"

putStrLn ("Nice to meet you, " <>|getLine)

A String is expected, butan IO String is provided.

= Well-Typed

("a" <> "b") <> ("c" <> "d")

= Well-Typed

("a" <> "b") <> ("c" <> "d")

”ab” <> (llCII <> |ld|l)

= Well-Typed

(nall <> ”b”) <> (IICU <> lldl!)
”ab” <> (llCII <> |ld|l)

IIabll <> ”Cd”

= Well-Typed

(nall <> ”b”) <> (IICU <> lldl!)
”ab” <> (llCII <> |ld|l)
IIabll <> ”Cd”

IIadeU

= Well-Typed

(nall <> ”b”) <> (IICU <> lldl!)
”ab” <> (llCII <> |ld|l)
IIabll <> ”Cd”

IIadeU

Or:
(||all <> I|bl|) <> (IICH <> lld||)

= Well-Typed

("a" <> "b") <> ("c" <> "d")
"ab" <> ("c¢" <> "d")

"ab" <> "cd"

"abcd"

Or:
("a" <> "b") <> ("c¢" <> "d"M)

(n n <> ||bl|) <> |lCd||

= Well-Typed

(n n ”b”) <> (ll n <> lldn)
" ab” <> (ll " <> |ld ")
IIabll <> ||Cd||

IIadeU

Or:
("a" <> "b") <> ("c¢" <> "d"M)

(|| n ||bl|) <> |lCd||
"ab" <> "cd"

= Well-Typed

(n n ”b”) <> (ll n <> lldn)
" ab” <> (ll " <> |ld ")
IIabll <> ||Cd||

IIadeU

Or:
("a" <> "b") <> ("c¢" <> "d"M)

(|| n ||bl|) <> |lCd||
"ab" <> "cd"
IIade"

Reduction order does not matter!

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)

("a" <> "Frodo") <> ("b" <> getlLine)

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)

"aFrodo" <> ("b" <> getlLine)

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)

"aFrodo" <> ("b" <> "Sam")

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getlLine)

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getlLine)

("a" <> getLine) <> ("b" <> "Frodo")

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getlLine)
("a" <> getLine) <> ("b" <> "Frodo")

("a" <> getlLine) <> "bFrodo"

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getlLine)
("a" <> getLine) <> ("b" <> "Frodo")
("a" <> getlLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getlLine)
("a" <> getLine) <> ("b" <> "Frodo")
("a" <> getlLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getlLine)
("a" <> getLine) <> ("b" <> "Frodo")
("a" <> getlLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"

= Well-Typed

More reduction

("a" <> getLine) <> ("b" <> getLine)
("a" <> "Frodo") <> ("b" <> getlLine)
"aFrodo" <> ("b" <> getlLine)
"aFrodo" <> ("b" <> "Sam")

"aFrodo" <> "bSam"

"aFrodobSam"

("a" <> getLine) <> ("b" <> getlLine)
("a" <> getLine) <> ("b" <> "Frodo")
("a" <> getlLine) <> "bFrodo"

("a" <> "Sam") <> "bFrodo"

"aSam" <> "bFrodo"

"aSambFrodo"
Suddenly reduction order does matter!

= Well-Typed

Another example

take 1 (("a" <> "b") <> ("c" <> "d"))

reducesto "a

= Well-Typed

Another example

take 1 (("a" <> "b") <> ("c" <> "d"))

reducesto "a

take 1 (("a" <> getLine) <> ("b" <> getline))

reducesto "a" , but how many lines of input should it read?

= Well-Typed

Explicit effects

» Decouple effects from the order of evaluation.
» Order and number of effects are always explicit.

» Side-effecting computations are distinguished from their results.

= Well-Typed

Laws actually hold

length (x <> x) = 2 * length x

Very sensible.

= Well-Typed

Laws actually hold

length (x <> x) = 2 * length x

Very sensible.

But would actually be wrong if we allowed x to be getlLine .

= Well-Typed

No escape

There is no* function of type
I0 a -> a

because we should not lie!

*(None that we speak of.)

= Well-Typed

Marking effects is good

sum :: [Int] -> Int

VS.

sumAndSendSpamMails :: [Int] -> IO Int

= Well-Typed

Abstraction

main :: I0 ()

main = do
putStrLn "Who are you?"
namel <- getlLine
putStrLn "Who are you?"
name2 <- getlLine

putStrlLn
("Nice to meet you, " <> namel <> " and " <> name2)

= Well-Typed

Abstraction

whoAreYou :: IO String
whoAreYou = do
putStrLn "Who are you?"

getlLine
main :: I0 ()
main = do

namel <- whoAreYou
name2 <- whoAreYou
putStrLn
("Nice to meet you, " <> namel <> " and " <> name2)

= Well-Typed

Abstraction

prompt :: String -> IO String
prompt text = do

putStrLn text

getlLine

whoAreYou :: IO String
whoAreYou = prompt "Who are you?"
main :: I0 ()
main = do

namel <- whoAreYou

name2 <- whoAreYou

putStrLn

("Nice to meet you, " <> namel <> " and " <> name2)

= Well-Typed

Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

= Well-Typed

Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

= Well-Typed

Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

prompt :: String -> IO String

= Well-Typed

Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

prompt :: String -> IO String
map :: (a => b) -> [a] -> [b]

= Well-Typed

Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =
map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

= Well-Typed

Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =

map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

sequence :: [I0 a] -> I0 [a]

= Well-Typed

Separation of concerns

"Are you also at HaskellX?"

no yes
"Oh, too bad." "Are you a Haskeller yet?"
no yes
"Perhaps after this day." "That's great."

= Well-Typed

A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue
| Done String

= Well-Typed

A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue
| Done String

haskellXConversation :: Dialogue
haskellXConversation =
Ask "Are you also at HaskellX?"

(Done "Oh, too bad.")

(Ask "Are you a Haskeller yet?"
(Done "Perhaps after this day.")
(Done "That's great.")

)

= Well-Typed

Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no
interactiveDialogue (Done response) =
putStrLn response

= Well-Typed

Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no
interactiveDialogue (Done response) =
putStrLn response

askBooleanQuestion :: String -> IO Bool
askBooleanQuestion question = do
putStrLn question
getBool

getBool :: I0 Bool
getBool = do
c <- getChar
putStrLn
if ¢ = 'y’
then pure True
else if ¢ == 'n
then pure False
else do
putStrLn "Please
getBool

= Well-Typed

Running a dialogue in the browser

webDialogue :: Dialogue -> IO ()
webDialogue d =

scotty 8000 $ do
get "/" $ from "
get "/:respor

responseString <- param "res
from responseString
where
from responseString = do
let r = mapMay parseResponse T tring
case replay d responses of
Just (Ask question _ _) ->
htmlPage $ do
p (string question)
ul $ do
1i (a ! href (stringValue (responseString <> "y")) $
1i (a ! href (stringValue (responseString <> "n")) $
Just (Done response) ->
htmlPage $
p (string response)
Nothing -> status status404

htmlPage
htmlPage
html . renderHtml . H.html . H.body

Html -> ActionM ()

parseResponse :: Char -> Maybe Bool
parseResponse 'y' = Just True
parseResponse 'n' = Just False
parseResponse _ = Nothing

replay Dialogue -> [Bool] -> Maybe Dialogue

replay yes) (Tr responses) = replay yes responses
replay _no _) (Fc responses) = replay no responses
replay] = Just d
replay _ , = Nothing

= Well-Typed

Conclusions

» Precise types marking the presence of side effects.

» Require us to be explicit about order when effects are present.
» Peace of mind if I0 isabsent.

» Not a high price to pay.

» IO actions are first class.

» Encourages coding style that limits side effects.

» More options for testing.

» More precise effect types possible.

= Well-Typed

Conclusions

» Precise types marking the presence of side effects.

» Require us to be explicit about order when effects are present.
» Peace of mind if I0 isabsent.

» Not a high price to pay.

» IO actions are first class.

» Encourages coding style that limits side effects.

» More options for testing.

» More precise effect types possible.

» Ask many questions.

andres@well-typed.com

= Well-Typed

