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(<>) :: String -> String -> String
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main = do
putStrLn "Who are you?"
putStrLn ("Nice to meet you, " <> getLine)
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main = do
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putStrLn ("Nice to meet you, " <>|getLine)

A String is expected, butan IO String is provided.
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Or:
("a" <> "b") <> ("c¢" <> "d"M)

(|| n ||bl|) <> |lCd||
"ab" <> "cd"
IIade"

Reduction order does not matter!
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More reduction
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Suddenly reduction order does matter!

= Well-Typed



Another example

take 1 (("a" <> "b") <> ("c" <> "d"))

reducesto "a
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Another example

take 1 (("a" <> "b") <> ("c" <> "d"))

reducesto "a

take 1 (("a" <> getLine) <> ("b" <> getline))

reducesto "a" , but how many lines of input should it read?
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Explicit effects

» Decouple effects from the order of evaluation.
» Order and number of effects are always explicit.

» Side-effecting computations are distinguished from their results.
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Laws actually hold

length (x <> x) = 2 * length x

Very sensible.
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Laws actually hold

length (x <> x) = 2 * length x

Very sensible.

But would actually be wrong if we allowed x to be getlLine .
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No escape

There is no* function of type
I0 a -> a

because we should not lie!

*(None that we speak of.)

= Well-Typed



Marking effects is good

sum :: [Int] -> Int

VS.

sumAndSendSpamMails :: [Int] -> IO Int

= Well-Typed



Abstraction

main :: I0 ()

main = do
putStrLn "Who are you?"
namel <- getlLine
putStrLn "Who are you?"
name2 <- getlLine

putStrlLn
("Nice to meet you, " <> namel <> " and " <> name2)
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Abstraction

whoAreYou :: IO String
whoAreYou = do
putStrLn "Who are you?"

getlLine
main :: I0 ()
main = do

namel <- whoAreYou
name2 <- whoAreYou
putStrLn
("Nice to meet you, " <> namel <> " and " <> name2)
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Abstraction

prompt :: String -> IO String
prompt text = do

putStrLn text

getlLine

whoAreYou :: IO String
whoAreYou = prompt "Who are you?"
main :: I0 ()
main = do

namel <- whoAreYou

name2 <- whoAreYou

putStrLn

("Nice to meet you, " <> namel <> " and " <> name2)

= Well-Typed
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Asking many questions

questions :: [String]
questions =
["Who are you?", "Are you a Haskeller yet?"]

prompts :: [IO String]
prompts =

map prompt questions

askQuestions :: IO [String]
askQuestions =
sequence prompts

sequence :: [I0 a] -> I0 [a]

= Well-Typed



Separation of concerns

"Are you also at HaskellX?"

no yes
"Oh, too bad." "Are you a Haskeller yet?"
no yes
"Perhaps after this day." "That's great."

= Well-Typed



A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue
| Done String

= Well-Typed



A datatype for dialogues

data Dialogue =
Ask String Dialogue Dialogue
| Done String

haskellXConversation :: Dialogue
haskellXConversation =
Ask "Are you also at HaskellX?"

(Done "Oh, too bad.")

(Ask "Are you a Haskeller yet?"
(Done "Perhaps after this day.")
(Done "That's great.")

)

= Well-Typed



Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no
interactiveDialogue (Done response) =
putStrLn response

= Well-Typed



Running a dialogue

interactiveDialogue :: Dialogue -> IO ()
interactiveDialogue (Ask question no yes) = do
response <- askBooleanQuestion question
if response
then interactiveDialogue yes
else interactiveDialogue no
interactiveDialogue (Done response) =
putStrLn response

askBooleanQuestion :: String -> IO Bool
askBooleanQuestion question = do
putStrLn question
getBool

getBool :: I0 Bool
getBool = do
c <- getChar
putStrLn
if ¢ = 'y’
then pure True
else if ¢ == 'n
then pure False
else do
putStrLn "Please
getBool

= Well-Typed



Running a dialogue in the browser

webDialogue :: Dialogue -> IO ()
webDialogue d =

scotty 8000 $ do
get "/" $ from "
get "/:respor

responseString <- param "res
from responseString
where
from responseString = do
let r = mapMay parseResponse T tring
case replay d responses of
Just (Ask question _ _) ->
htmlPage $ do
p (string question)
ul $ do
1i (a ! href (stringValue (responseString <> "y")) $
1i (a ! href (stringValue (responseString <> "n")) $
Just (Done response) ->
htmlPage $
p (string response)
Nothing -> status status404

htmlPage
htmlPage
html . renderHtml . H.html . H.body

Html -> ActionM ()

parseResponse :: Char -> Maybe Bool
parseResponse 'y' = Just True
parseResponse 'n' = Just False
parseResponse _ = Nothing

replay Dialogue -> [Bool] -> Maybe Dialogue

replay yes) (Tr responses) = replay yes responses
replay _no _ ) (Fc responses) = replay no responses
replay ] = Just d
replay _ , = Nothing

= Well-Typed



Conclusions

» Precise types marking the presence of side effects.

» Require us to be explicit about order when effects are present.
» Peace of mind if I0 isabsent.

» Not a high price to pay.

» IO actions are first class.

» Encourages coding style that limits side effects.

» More options for testing.

» More precise effect types possible.
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» Ask many questions.

andres@well-typed.com
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