Qualified Types for ML-F

Daan Leijen and Andres Loh
27 September 2005

Motivation / contribution

Motivation:

@ Make ML-F suitable for use in a full-fledged programming language
(read: Haskell).

Contribution:
@ Extend ML-F with support for qualified types.

@ Give an evidence translation of qualified ML-F types into a core
language.

Daan Leijen and Andres Loh Qualified Types for ML-F

Overview

© Hindley-Milner and ML-F
@ Arbitrary-rank polymorphism
@ Impredicativity

© Qualified types
@ Type classes

© ML-F with qualified types
@ Example/Problem
@ Solution

Daan Leijen and Andres Loh

Qualified Types for ML-F

Overview

© Hindley-Milner and ML-F
@ Arbitrary-rank polymorphism
@ Impredicativity

Daan Leijen and Andres Loh Qualified Types for ML-F

Hindley-Milner

The type system we all know and love.

At the basis of ML, Haskell, Clean, and many other functional
programming languages.

Efficient type inference.

No type annotations required.

Principal types.

Daan Leijen and Andres Loh Qualified Types for ML-F

ML-F

ML-F is an extension of the Hindley-Milner type system (ICFP 2003).
Arbitrary-rank polymorphism.

Impredicative.

Type annotations are required where higher-rank polymorphic values
are introduced.

(Still) Principal types.

Daan Leijen and Andres Loh Qualified Types for ML-F

Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

Daan Leijen and Andres Loh Qualified Types for ML-F

Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type Bool — Bool — «.
The second occurrence is of type Char — Char — .

Daan Leijen and Andres Loh Qualified Types for ML-F

Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).

Daan Leijen and Andres Loh Qualified Types for ML-F

Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).
In ML-F:

| f (choose :: V. — v —) = (choose True False, choose *a’ ’b”)

Daan Leijen and Andres Loh Qualified Types for ML-F

Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).
In ML-F:

| f (choose :: V. — v —) = (choose True False, choose *a’ ’b”)
ML-F type:

| (Vo.a — o — @) — (Bool, Char)

Daan Leijen and Andres Loh Qualified Types for ML-F

Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).
In ML-F:

| f (choose :: V. — v —) = (choose True False, choose *a’ ’b”)

Real ML-F type:

| V(o =VB.3— B — B3).a — (Bool, Char)

Daan Leijen and Andres Loh Qualified Types for ML-F

Impredicativity
~ quantified variables range over polymorphic types

choose :Voa.ao — a— o
id mVB.6—f
| choose id :: ...

Daan Leijen and Andres Loh Qualified Types for ML-F

Impredicativity
~ quantified variables range over polymorphic types

choose :Voa.ao — a— o

id mVB.6—f
Possibility 1 (predicative, Haskell):

| choose id :: V. (v —) — (v — 7)

Daan Leijen and Andres Loh Qualified Types for ML-F

Impredicativity
~ quantified variables range over polymorphic types

choose = Va.a—a— «
id V.8 —
Possibility 1 (predicative, Haskell):
| choose id :: V. (v —) — (v — 7)

Possibility 2 (id is used at its polymorphic type):

| chooseid :: (V3.8 — B8) — (V3.8 — B)

Daan Leijen and Andres Loh Qualified Types for ML-F

Impredicativity
~ quantified variables range over polymorphic types

choose = Voa.a—a— «

id mVB.6—f
Possibility 1 (predicative, Haskell):
| choose id :: V. (v —) — (v — 7)
Possibility 2 (id is used at its polymorphic type):
| chooseid :: (V3.8 — B8) — (V3.8 — B)
ML-F:

| chooseid :: V(a > V3.8 — B).a —

Daan Leijen and Andres Loh Qualified Types for ML-F

Impredicativity
~ parametrized datatypes can be instantiated to
polymorphic types

| lid] = V(a > V3.8 — B).]a]
Alternatively:

| [id] :: [V6.5 — 0]

Haskell:

| [id] = V3.8 — 5]

Daan Leijen and Andres Loh Qualified Types for ML-F

First-class higher-rank polymorphism

fuV(a=V3.0— [— [).a — (Bool, Char)

[f]

id

Daan Leijen and Andres Loh

Qualified Types for ML-F

10

First-class higher-rank polymorphism

fuV(a=V3.0— [— [).a — (Bool, Char)

[f]

id

[runST]

runST computation vs. runST $ computation

Daan Leijen and Andres Loh Qualified Types for ML-F

10

The ML-F type language

Monotypes:
| T U=gT1...Th |
Polytypes:

| o =1 |VQ.7

Prefix:

| Q:i=c](ao0)Q
Bounds:

o =2 | =

The notation Va. 7 abbreviates V(o > L). 7.

Daan Leijen and Andres Loh

Qualified Types for ML-F

11

Overview

© Qualified types
@ Type classes

Daan Leijen and Andres Loh

Qualified Types for ML-F

12

Qualified types

A general framework for types with predicates 7.

Usually written m = 0.

Many applications:
» Type classes
> Implicit parameters
» Records (has-predicates, lacks-predicates)

Generic theory by Mark Jones, and many others (rules for predicate
entailment and propagation).

Implementation: usually using evidence translation.

Daan Leijen and Andres Loh Qualified Types for ML-F

13

Type classes

@ Predicates of the form C 7.

o Example:

| (z2) :: YVa. Eq @ = o — o — Bool

@ Predicates assert that certain types are instances of a class.

@ Evidence: a dictionary of the class methods for the type in question.

Daan Leijen and Andres Loh Qualified Types for ML-F

14

Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.

Daan Leijen and Andres Loh Qualified Types for ML-F

Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.

| original code internal translation

Daan Leijen and Andres Loh Qualified Types for ML-F

Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.

original code internal translation

(z2) = Va.Eqa = o — a — Bool (==) :: Va. Eq @ — a — o« — Bool

Daan Leijen and Andres Loh Qualified Types for ML-F

Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.

original code internal translation
(z2) = Va.Eq o = a — a — Bool (==) :: Va.Eq @ — o« — a — Bool

’q? == b’ (::) €dChar ’a’ °p?

Daan Leijen and Andres Loh Qualified Types for ML-F

Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class

methods.

o Evidence is automatically provided or propagated.

original code
(z2) : Va.Eq a = a — a — Bool
’q? == b’

elem :: Va. Eq oo = [a] — Bool
elemy = or - map (Ax.x == y)

Daan Leijen and Andres Loh

internal translation

(z2) :: Va. Eq @« — o — a — Bool
(==) edchar @7 D7

elem :: Va. Eq o — [a] — Bool
elemeq, y =

or - map (Ax. (==) eq,, X y)

Qualified Types for ML-F

ML-F and qualified types

When adding qualified types to ML-F, the tricky part is to adapt the
evidence translation.

Daan Leijen and Andres Loh Qualified Types for ML-F

Overview

© ML-F with qualified types
@ Example/Problem
@ Solution

Daan Leijen and Andres Loh

Qualified Types for ML-F

17

Example: four lists

XS1 = []

XSp = const : Xs1
XS3 = min :Xxsp
xsy = (<) :xs3

const = Vaf.ao — — «
min =Va.Orda=a—a—«
(<) =Va.0Orda= a— a— Bool

Daan Leijen and Andres Loh

Qualified Types for ML-F

18

Example: four lists

XS1 = []
XSp = const : Xs1
XS3 =

Haskell types.

Vo [a]

sVYapf.la— f— o]
min :xsp i
xsy = (<) :xs3:

Va.Ord a = [— a — «]
[Bool — Bool — Bool]

const :VafB.aa — 3 — «
min = Va.Orda=a—a— «
(<) =Va.0Orda= a— a— Bool

Daan Leijen and Andres Loh

Qualified Types for ML-F

18

Example: four lists

XS1 = []
XSp = const : Xs1

XS3 = min :Xsp i
xsy = (<) :xs3:

ML-F types.

mVa. [
2V(y2Vap.a— f— a)lv]

V(y >Va.0Orda = a — a— a).[7]

[Bool — Bool — Bool]

const :VafB.aa — 3 — «
min = Va.Orda=a—a— «
(<) =Va.0Orda= a— a— Bool

Daan Leijen and Andres Loh

Qualified Types for ML-F

18

Haskell evidence translation

xs1 =[] Vo [a]

xsp = const: xs; : Va fB.[a — [— «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

Daan Leijen and Andres Loh

Qualified Types for ML-F

19

Haskell evidence translation

xs1 =[] Vo [a]

xsp = const: xs; : Va fB.[a — [— «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []°

Daan Leijen and Andres Loh

Qualified Types for ML-F

19

Haskell evidence translation

xs1 =[] Vo [a]

xsp = const : xsy :: Va f.[a — 3 — «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []°

xsy i» Vafp.[a — [— «a]
xs5 = const™ : xs]

Daan Leijen and Andres Loh

Qualified Types for ML-F

19

Haskell evidence translation

xs1 =[] Vo [a]

xsp = const : xsy :: Va f.[a — 3 — «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []°

xsy i» Vafp.[a — [— «a]
xs5 = const™ : xs]

xs3 0 Va.Ord o — [a — o —]
xs3 = Aord,. min* ord,, : xs3

Daan Leijen and Andres Loh

Qualified Types for ML-F

19

Haskell evidence translation

XS1
XS
XS3
XS4

Xs]

*
XSq

XS5

*
XSy

*
xs}
XS3

*
XSy
*

=] nVa. [o]

= const :xs1 = Vaf. [a — [— «

=min :xsp = Va.Ord a = [— a — «]
= (<) :xs3::[Bool — Bool — Bool]

: Va. [
=[I
s Vapf.la— 0 — o]

= const™ : xs]

2 Va.Orda — [a — a — «a
= Xord,. min* ord,, : xs3

:: [Bool — Bool — Bool]
= (<)* ordgeol ZXS; ordggol

Daan Leijen and Andres Loh

Qualified Types for ML-F

19

Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a—). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

Daan Leijen and Andres Loh Qualified Types for ML-F

20

Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a—). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

Daan Leijen and Andres Loh Qualified Types for ML-F

20

Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a—). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsy it [VafB.a — [— af
xs5 = const™ : xs]

Daan Leijen and Andres Loh Qualified Types for ML-F

20

Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a—). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsy it [VafB.a — [— af
xs5 = const™ : xs]

xs3 it [Va.Ord a — a — o — o]
Xs3 =min®:...xs;...

Daan Leijen and Andres Loh Qualified Types for ML-F

20

Naive evidence translation for ML-F types

XS1
XS2
XS3
XS4

XS]

*

=] i Va. [o]

=const:xs; = V(y > Vap.a— [— a)[v]
=min :xs2 = V(y>Va.Orda=a— a— a).[7]

= (<) :xs3::[Bool — Bool — Bool]

: Va. [
=[I
t [Vaf.a— 8 — al

= const™ : xs]

: [Va.Ord o — a — a — af
=min*:...xs;...

:: [Bool — Bool — Bool]
= (<)* ordool : ... XS5 ...

Daan Leijen and Andres Loh

Qualified Types for ML-F

20

Idea

| f=V(a>o0).7

Daan Leijen and Andres Loh

Qualified Types for ML-F

pal

Daan Leijen and Andres Loh

Qualified Types for ML-F

pal

Daan Leijen and Andres Loh

Qualified Types for ML-F

pal

|V(0z20).7 as Ya.a>o=rT1

| f* 2 Va. (0" - a) = 7*

Daan Leijen and Andres Loh

Qualified Types for ML-F

pal

Daan Leijen and Andres Loh Qualified Types for ML-F

Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

Daan Leijen and Andres Loh Qualified Types for ML-F

22

Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
(<) :xs3::[Bool — Bool — Bool]

XS4

xsy i1 Va. [o]
xsp = []"

Daan Leijen and Andres Loh Qualified Types for ML-F

22

Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsg it V. (Va B (@ — B — a) —) — [1]
xs5 = Ava. (vo const®) : xs]

Daan Leijen and Andres Loh Qualified Types for ML-F

22

Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsg it V. (Va B (@ — B — a) —) — [1]
xs5 = Ava. (vo const®) : xs]

xs3 it Vv. (Va. (Ord v — o — a — a) —) — [7]
xs5 = Avz. (v3 min*) : xs} (Ax.v3 (Aordg. x))

Daan Leijen and Andres Loh Qualified Types for ML-F

22

Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [— a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsg it V. (Va B (@ — B — a) —) — [1]
xs5 = Ava. (vo const®) : xs]

xs3 it Vv. (Va. (Ord v — o — a — a) —) — [7]
xs5 = Avz. (v3 min*) : xs} (Ax.v3 (Aordg. x))

:: [Bool — Bool — Bool]
= (<)* ordpool : xs% (Ax.x ordggol)

XS
S

*
4
*
4

Daan Leijen and Andres Loh Qualified Types for ML-F

Discussion

We can perform an evidence translation for qualified ML-F types.

The paper contains many additional details of the extension.

ML-F with qualified types has advantages over current Haskell
extensions:

> Impredicativity makes polymorphic values truly first-class.

» Polymorphic datastructures without explicit packing and unpacking.

» Predicates can have polymorphic arguments, too (example: implicit
parameters of polymorphic type).

ML-F could be a type system for Haskell.

We are working on a prototype implementation in the Morrow
compiler.

Daan Leijen and Andres Loh Qualified Types for ML-F

23

	Hindley-Milner and ML-F
	Arbitrary-rank polymorphism
	Impredicativity

	Qualified types
	Type classes

	ML-F with qualified types
	Example/Problem
	Solution

