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Motivation / contribution

Motivation:

@ Make ML-F suitable for use in a full-fledged programming language
(read: Haskell).

Contribution:
@ Extend ML-F with support for qualified types.

@ Give an evidence translation of qualified ML-F types into a core
language.
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Overview

© Hindley-Milner and ML-F
@ Arbitrary-rank polymorphism
@ Impredicativity
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Hindley-Milner

The type system we all know and love.

At the basis of ML, Haskell, Clean, and many other functional
programming languages.

Efficient type inference.

No type annotations required.

Principal types.
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ML-F

ML-F is an extension of the Hindley-Milner type system (ICFP 2003).
Arbitrary-rank polymorphism.

Impredicative.

Type annotations are required where higher-rank polymorphic values
are introduced.

(Still) Principal types.
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Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

Daan Leijen and Andres Loh Qualified Types for ML-F



Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type  Bool — Bool — «.
The second occurrence is of type Char — Char — .
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Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type  Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).
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Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type  Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).
In ML-F:

| f (choose :: V. — v — ) = (choose True False, choose *a’ ’b”)
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Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type  Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).
In ML-F:

| f (choose :: V. — v — ) = (choose True False, choose *a’ ’b”)
ML-F type:

| (Vo.a — o — @) — (Bool, Char)

Daan Leijen and Andres Loh Qualified Types for ML-F



Arbitrary-rank polymorphism
~ functions can have polymorphic arguments

| f choose = (choose True False, choose ’a’ ’b”)

@ Within f, the function choose is used at two different types.
The first occurrence is of type  Bool — Bool — «.
The second occurrence is of type Char — Char — .

@ The above definition does not type-check in Haskell (nor in ML).
In ML-F:

| f (choose :: V. — v — ) = (choose True False, choose *a’ ’b”)

Real ML-F type:

| V(o =VB.3— B — B3).a — (Bool, Char)
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Impredicativity
~ quantified variables range over polymorphic types

choose :Voa.ao — a— o
id mVB.6—f
| choose id :: ...
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Impredicativity
~ quantified variables range over polymorphic types

choose :Voa.ao — a— o

id mVB.6—f
Possibility 1 (predicative, Haskell):

| choose id :: V. (v — ) — (v — 7)
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Impredicativity
~ quantified variables range over polymorphic types

choose = Va.a—a— «
id V.8 —
Possibility 1 (predicative, Haskell):
| choose id :: V. (v — ) — (v — 7)

Possibility 2 (id is used at its polymorphic type):

| chooseid :: (V3.8 — B8) — (V3.8 — B)
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Impredicativity
~ quantified variables range over polymorphic types

choose = Voa.a—a— «

id mVB.6—f
Possibility 1 (predicative, Haskell):
| choose id :: V. (v — ) — (v — 7)
Possibility 2 (id is used at its polymorphic type):
| chooseid :: (V3.8 — B8) — (V3.8 — B)
ML-F:

| chooseid :: V(a > V3.8 — B).a —
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Impredicativity
~ parametrized datatypes can be instantiated to
polymorphic types

| lid] = V(a > V3.8 — B).]a]
Alternatively:

| [id] :: [V6.5 — 0]

Haskell:

| [id] = V3.8 — 5]
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First-class higher-rank polymorphism

fuV(a=V3.0— [ — [).a — (Bool, Char)

[f]

id
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First-class higher-rank polymorphism

fuV(a=V3.0— [ — [).a — (Bool, Char)

[f]

id

[runST]

runST computation vs.  runST $ computation
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The ML-F type language

Monotypes:
| T U=gT1...Th |
Polytypes:

| o =1 |VQ.7

Prefix:

| Q:i=c](ao0)Q
Bounds:

o =2 | =

The notation Va. 7 abbreviates V(o > L). 7.
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Overview

© Qualified types
@ Type classes
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Qualified types

A general framework for types with predicates 7.

Usually written m = 0.

Many applications:
» Type classes
> Implicit parameters
» Records (has-predicates, lacks-predicates)

Generic theory by Mark Jones, and many others (rules for predicate
entailment and propagation).

Implementation: usually using evidence translation.
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Type classes

@ Predicates of the form C 7.

o Example:

| (z2) :: YVa. Eq @ = o — o — Bool

@ Predicates assert that certain types are instances of a class.

@ Evidence: a dictionary of the class methods for the type in question.
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Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.
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Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.

| original code internal translation

Daan Leijen and Andres Loh Qualified Types for ML-F



Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.

original code internal translation

(z2) = Va.Eqa = o — a — Bool (==) :: Va. Eq @ — a — o« — Bool
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Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class
methods.

o Evidence is automatically provided or propagated.

original code internal translation
(z2) = Va.Eq o = a — a — Bool (==) :: Va.Eq @ — o« — a — Bool

’q? == b’ (::) €dChar ’a’ °p?
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Evidence translation

@ Predicates are represented by evidence.

@ Evidence for class predicates is a dictionary containing the class

methods.

o Evidence is automatically provided or propagated.

original code
(z2) : Va.Eq a = a — a — Bool
’q? == b’

elem :: Va. Eq oo = [a] — Bool
elemy = or - map (Ax.x == y)

Daan Leijen and Andres Loh

internal translation

(z2) :: Va. Eq @« — o — a — Bool
(==) edchar @7 D7

elem :: Va. Eq o — [a] — Bool
elemeq, y =

or - map (Ax. (==) eq,, X y)
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ML-F and qualified types

When adding qualified types to ML-F, the tricky part is to adapt the
evidence translation.
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Overview

© ML-F with qualified types
@ Example/Problem
@ Solution
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Example: four lists

XS1 = []

XSp = const : Xs1
XS3 = min :Xxsp
xsy = (<) :xs3

const = Vaf.ao —  — «
min =Va.Orda=a—a—«
(<) =Va.0Orda= a— a— Bool
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Example: four lists

XS1 = []
XSp = const : Xs1
XS3 =

Haskell types.

Vo [a]

sVYapf.la— f— o]
min  :xsp i
xsy = (<) :xs3:

Va.Ord a = [ — a — «]
[Bool — Bool — Bool]

const :VafB.aa — 3 — «
min = Va.Orda=a—a— «
(<) =Va.0Orda= a— a— Bool
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Example: four lists

XS1 = []
XSp = const : Xs1

XS3 = min :Xsp i
xsy = (<) :xs3:

ML-F types.

mVa. [
2V(y2Vap.a— f— a)lv]

V(y >Va.0Orda = a — a— a).[7]

[Bool — Bool — Bool]

const :VafB.aa — 3 — «
min = Va.Orda=a—a— «
(<) =Va.0Orda= a— a— Bool
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Haskell evidence translation

xs1 =[] Vo [a]

xsp = const: xs; : Va fB.[a — [ — «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

Daan Leijen and Andres Loh

Qualified Types for ML-F

19



Haskell evidence translation

xs1 =[] Vo [a]

xsp = const: xs; : Va fB.[a — [ — «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []°
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Haskell evidence translation

xs1 =[] Vo [a]

xsp = const : xsy :: Va f.[a — 3 — «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []°

xsy i» Vafp.[a — [ — «a]
xs5 = const™ : xs]
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Haskell evidence translation

xs1 =[] Vo [a]

xsp = const : xsy :: Va f.[a — 3 — «f

xs3 =min :xsp::Va.Ord o = [a — a —
xsg = (<) :xs3 :: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []°

xsy i» Vafp.[a — [ — «a]
xs5 = const™ : xs]

xs3 0 Va.Ord o — [a — o — ]
xs3 = Aord,. min* ord,, : xs3
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Haskell evidence translation

XS1
XS
XS3
XS4

Xs]

*
XSq

XS5

*
XSy

*
xs}
XS3

*
XSy
*

=] nVa. [o]

= const :xs1 = Vaf. [a — [ — «

=min :xsp = Va.Ord a = [ — a — «]
= (<) :xs3::[Bool — Bool — Bool]

: Va. [
=[I
s Vapf.la— 0 — o]

= const™ : xs]

2 Va.Orda — [a — a — «a
= Xord,. min* ord,, : xs3

:: [Bool — Bool — Bool]
= (<)* ordgeol ZXS; ordggol
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Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— ). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]
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Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— ). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"
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Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— ). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsy it [VafB.a — [ — af
xs5 = const™ : xs]
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Naive evidence translation for ML-F types

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vaf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— ). [7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsy it [VafB.a — [ — af
xs5 = const™ : xs]

xs3 it [Va.Ord a — a — o — o]
Xs3 =min®:...xs;...
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Naive evidence translation for ML-F types

XS1
XS2
XS3
XS4

XS]

*

=] i Va. [o]

=const:xs; = V(y > Vap.a— [ — a)[v]
=min :xs2 = V(y>Va.Orda=a— a— a).[7]

= (<) :xs3::[Bool — Bool — Bool]

: Va. [
=[I
t [Vaf.a— 8 — al

= const™ : xs]

: [Va.Ord o — a — a — af
=min*:...xs;...

:: [Bool — Bool — Bool]
= (<)* ordool : ... XS5 ...
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Idea

| f=V(a>o0).7
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|V(0z20).7 as Ya.a>o=rT1

| f* 2 Va. (0" - a) = 7*
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Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]
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Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
(<) :xs3::[Bool — Bool — Bool]

XS4

xsy i1 Va. [o]
xsp = []"
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Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsg it V. (Va B (@ — B — a) — ) — [1]
xs5 = Ava. (vo const®) : xs]
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Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsg it V. (Va B (@ — B — a) — ) — [1]
xs5 = Ava. (vo const®) : xs]

xs3 it Vv. (Va. (Ord v — o — a — a) — ) — [7]
xs5 = Avz. (v3 min*) : xs} (Ax.v3 (Aordg. x))
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Applying the idea to the example

xs1 =[] i Va. [o]

xsp = const:xsy = V(y > Vapf.a— [ — a) [v]

xs3 =min :xsp = V(y >Va.Orda = a — a— «).[7]
xsq = (<) :xs3:: [Bool — Bool — Bool]

xsy i1 Va. [o]
xsp = []"

xsg it V. (Va B (@ — B — a) — ) — [1]
xs5 = Ava. (vo const®) : xs]

xs3 it Vv. (Va. (Ord v — o — a — a) — ) — [7]
xs5 = Avz. (v3 min*) : xs} (Ax.v3 (Aordg. x))

:: [Bool — Bool — Bool]
= (<)* ordpool : xs% (Ax.x ordggol)

XS
S

*
4
*
4
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Discussion

We can perform an evidence translation for qualified ML-F types.

The paper contains many additional details of the extension.

ML-F with qualified types has advantages over current Haskell
extensions:

> Impredicativity makes polymorphic values truly first-class.

» Polymorphic datastructures without explicit packing and unpacking.

» Predicates can have polymorphic arguments, too (example: implicit
parameters of polymorphic type).

ML-F could be a type system for Haskell.

We are working on a prototype implementation in the Morrow
compiler.
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