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Abstract
The UNIX diff program finds the difference between two text files
using a classic algorithm for determining the longest common sub-
sequence; however, when working with structured input (e.g. pro-
gram code), we often want to find the difference between tree-like
data (e.g. the abstract syntax tree). In a functional programming
language such as Haskell, we can represent this data with a fam-
ily of (mutually recursive) datatypes. In this paper, we describe a
functional, datatype-generic implementation of diff (and the asso-
ciated program patch). Our approach requires advanced type sys-
tem features to preserve type safety; therefore, we present the code
in Agda, a dependently-typed language well-suited to datatype-
generic programming. In order to establish the usefulness of our
work, we show that its efficiency can be improved with memoiza-
tion and that it can also be defined in Haskell.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Data types and structures

General Terms Algorithms, Reliability, Languages

Keywords Dependent types, Datatype-generic programming, Edit
distance

1. Introduction
The UNIX diff program [Hunt and Mcilroy, 1976] interprets two
files as sequences of lines and outputs an edit script of inserted,
deleted, and copied lines to represent the difference between the
files. Its counterpart, the patch program, takes an edit script (usu-
ally produced by diff) and a file, applies the changes to lines of
the file, and generates a new file whose edit distance from the input
file is defined by the input edit script.

As an example of diff in action, we consider the differ-
ence between two files with JSON data. JavaScript Object Nota-
tion [Crockford, 2006] is a simple data-interchange language often
used for communicating between a web server and a browser. The
first file contains a nested array, and in the second file, the same
array has been flattened:

[ "foo",
[ "bar",

"baz" ] ]

[ "foo",
"bar",
"baz" ]
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The output of running diff on these two files is a string patch
equivalent to the following sequence of line edits1:

Cpy "[ \"foo\","
$ Del " [ \"bar\","
$ Del " \"baz\" ] ]"
$ Ins " \"bar\","
$ Ins " \"baz\" ]"

A typical diff output would ignore copied lines (Cpy) and prefix
an inserted line (Ins) with a + and a deleted line (Del) with a -.
When reading the diff output for program code from a version
control system, it can be difficult to see the true, syntactic changes.
In the above case, the edit script tells us that we have deleted two
lines and inserted two new ones, when we really want to know that
we have simply deleted array borders.

We can produce a better result of the JSON file comparison with
a syntax-aware diffing tool. Representing the JSON files as values
of an abstract syntax, we can determine precisely which parts of the
syntax tree have changed. Here is one possible output:

Cpy ‘JSArray’
$ Cpy ‘(:)’
$ CpyTree
$ Cpy ‘(:)’
$ Del ‘JSArray’
$ Del ‘(:)’
$ CpyTree
$ CpyTree
$ Del ‘[]’
$ End

At first glance, this edit script appears longer than the previous one;
however, in terms of JSON syntax, it is much more precise about
the differences. Since we are only concerned with the differences,
we focus on the inserts and deletes, disregarding all copies. We
arrive at the key changes: deleting a ‘JSArray’ and a its related list-
like structure, ‘(:)’ and ‘[]’, for the nested elements.

We propose a type-safe, structural, diff-like library for fami-
lies of algebraic datatypes (such as the JSON abstract syntax). Our
implementation draws from previous work on algorithms for find-
ing the edit distance between two trees and the maximum com-
mon embedded subtree. Unlike other structural diff implementa-
tions (see Section 2.1), our approach is unique in that it is type-safe
and generic in the choice of datatype family. We can generate edit
scripts and perform patching entirely on typed abstract syntax trees
without the need to resort to a universal datatype in the process.

Overview
Our research does not stand alone. To give an idea of the back-
ground needed to get here, in Section 2, we discuss the algorithms
forming the foundation of our presentation as well as some key

1 The symbol $ is the standard Haskell low-precedence function application.



developments towards a diff2 for tree-structured data. We also give
some background on datatype-generic programming, a concept that
we use to implement our diff and patch functions for arbitrary
datatypes.

The description of our implementation3 begins in Section 3 with
simple diff and patch functions for lists. We present the develop-
ment in Agda, a dependently typed programming language [Norell,
2007] with a syntax similar to Haskell. Agda is well-suited to
modeling datatype-generic programs [Oury and Swierstra, 2008].
It allows us to demonstrate strong type safety guarantees without
the distraction of complex type-level features in a language such
as Haskell. For a tutorial on Agda, we refer the reader to Norell
[2008].

We then traverse from lists to trees. Section 4 provides a diff and
a patch that closely mirror the definitions for lists, but it uses a tree
representation that is more appropriate for describing datatypes in
an untyped way.

After visiting untyped trees, we find that we need a type-safe
representation of a datatype to ensure a valid edit script. In Sec-
tion 5, we describe the representation and generic functions for diff
and patch.

In describing the implementations in these sections, we have
necessarily optimized for presentation instead of efficiency. We
resolve this issue with a discussion of the changes necessary for
memoization in Section 6.

Now that we have a complete and efficient implementation, we
would like to use our library in larger applications. However, since
Agda has not (yet) reached the stage where it is efficient enough for
such development, we implemented the same library in Haskell.
In Section 7, we highlight the differences in our Haskell diff and
patch, pointing out the translations from dependently type aspects
in Agda to type-level programming techniques in Haskell.

Wrapping up the paper, we report on some extensions needed
for practical matters in Section 8, and in Section 9, we conclude
with some reflection and thoughts on future work.

2. Background
Previous research played a key role in guiding us to the current
point. Most notably, there is a wealth of information on the algo-
rithms behind edit distance, differential comparison, pattern match-
ing, and inclusion, both on sequences and on trees. In a similar vein,
datatype-generic programming has risen to a prominent place in the
improvement of software development techniques and libraries. In
order to put our work in the appropriate context, we discuss the
development of these two threads in the following sections.

2.1 Algorithms for Diff
The algorithm for finding the generic diff between two datatypes
is related to several areas of algorithms research. Our problem is
a special case of the edit distance problem. The edit distance be-
tween entities A and B is the minimum number of primitive edit
operations to transform A into B. A corresponding edit script is
the sequence of those operations. The best known example of the
edit distance problem is the longest common subsequence prob-
lem [Hirschberg, 1975, Bergroth et al., 2000]. It was popularized

2 We use the term “diff” in several different manners, often in the general
sense of an algorithm, but sometimes in a specific reference to an edit script.
The meaning should be clear from the context.
3 The code in this paper has been formatted using lhs2TEX. This allows
us some notational freedom. We do not show the complete code for lack
of space, but the sources of this paper type-check. For Agda, we disable
termination checking and enable the type rule Set : Set. The use of these
modifications is not essential for the algorithms presented, but simplifies the
presentation.

by the UNIX diff program, which finds the differences between
two text files with a minimal list of edit operations. In this case, the
edit operations are inserting and deleting lines of text.

The development of research naturally evolved beyond strings
and other sequential data into algorithms for more complex struc-
tured data. In particular, the edit distance for trees [Selkow, 1977,
Zhang and Shasha, 1989, Bille, 2005] has seen extensive activity.
In this case, the edit operations may include inserting, deleting, up-
dating, or copying single nodes or entire subtrees (and the cost of
operations may vary). Tree-structured data may be ordered or un-
ordered, labeled or unlabeled, rooted or unrooted. An important
use of tree comparison is change detection [Chawathe et al., 1996,
Chawathe and Garcia-Molina, 1997] in data such as XML [Peters,
2005] and program syntax [Yang, 1991]. Tree diff is required in
order to support syntax-directed version control [Tieleman, 2006].

Our implementation differs from previous work in that we pre-
serve the type safety of the edit script, so that we can transform one
value to another without using an untyped intermediate step. In or-
der to do that for arbitrary datatypes, we turn to datatype-generic
programming.

2.2 Datatype-Generic Programming
The techniques of datatype-generic programming allow a program-
mer to define functions that work on the structure of datatypes, re-
moving the need to write similar functions for each datatype [Gib-
bons, 2007]. Common examples of generic functions include
equality, parsing, pretty-printing, and ordered comparison. In
Haskell, generic functions have been implemented with language
extensions [Jansson and Jeuring, 1997, Löh, 2004], though the cur-
rent trend is to use libraries.

Most generic programming libraries use a generic view to rep-
resent the structure of a datatype [Holdermans et al., 2006]. The
sum of products in, for example, Extensible and Modular Generics
for the Masses [Oliveira et al., 2006] allows functions to be defined
by induction on the structure. A fixed point representation such as
Multirec’s [Rodriguez et al., 2009] enables access to the recursive
structure of a family (or system) of types.

Defining a generic view in Haskell is closely related to con-
structing a universe in type theory and dependently typed program-
ming. A universe consists of a datatype of codes and an interpreta-
tion function that maps codes to types [Benke et al., 2003, Morris,
2007]. Functions can then be defined by induction on the codes.

We construct a universe for generic diff using lists to represent
types, constructors, and fields. Unlike other previously reported
generic views, this is well-suited to our needs. We discuss this in
more detail in Section 5.

The only work (of which we are aware) that comes close to
being a generic diff in a functional programming language is from
Piponi [2007a,b] on antidiagonals. The antidiagonal is a construct
carrying a pair of provably distinct values of the same type. A value
of the antidiagonal contains information about the source and the
target value and can therefore be considered to be an edit script.
However, no effort is made to keep the script minimal or readable
by humans.

3. Lists
We present the functions diff and patch that correspond to the UNIX
diff and patch programs. Let us start with the type of diff:

diff : List Item→ List Item→ Diff

We use the standard List datatype to represent a sequence. The Item
elements in the list are abstract placeholders for anything; we only
require that type to support equality.

The resulting Diff type is intended both for both human con-
sumption and as input to a patch function. A Diff value is an edit



script: it contains the sequence of edit operations. We define Diff as
a datatype of type Set with a constructor for each edit operation.

data Diff : Set where
ins : Item→ Diff→ Diff
del : Item→ Diff→ Diff
cpy : Item→ Diff→ Diff
end : Diff

The possible edit operations are inserting an item (ins), deleting an
item (del), copying an item (cpy), and concluding the edit script
(end). A complete edit script is constructed as a recursive applica-
tion of Diff constructors.

The above definition of Diff contains sufficient information to
fully reconstruct both the original and target lists, but there are a
number of other possible variations. If we omit the Item argument
from the cpy constructor, we can still construct the target from the
source and vice versa. However, if we omit the Item from both cpy
and del, we lose the ability to invert the diff. A further option is to
merge multiple subsequent cpy applications in order to reduce the
size of the Diff. In this paper, we generally use a definition of Diff
that contains all information, but we discuss the usefulness of a few
variations in Section 8.

Now that we have introduced the type of an edit script, we can
implement our functions diff and patch. We start by defining patch,
since it is simpler.

3.1 Patching Lists
Given a diff and a value, patch may produce a patched value:

patch : Diff→ List Item→Maybe (List Item)

Patching can fail. For example, a diff may indicate that a non-
existing item should be removed. However, while an arbitrary edit
script may cause patch to fail, the following property should hold:

patch-diff-spec = ∀ xs ys→ patch (diff xs ys) xs≡ just ys

The output of diff always generates a result that will reproduce the
same target when passed to patch.

The function is straightforward to implement:

patch (ins x d) ys = (insert x � patch d ) ys
patch (del x d) ys = ( patch d � delete x) ys
patch (cpy x d) ys = (insert x � patch d � delete x) ys
patch end [] = just []
patch end (y :: ys) = nothing

Let us look at each of the cases of patch: The case for ins patches
the rest of the list and then inserts an item in the beginning.

insert : Item→ List Item→Maybe (List Item)
insert x ys = just (x :: ys)

While insert is not required to return a Maybe here, later versions of
this function will need it, so we use this type to unify the definitions.
The case for del fails when the input list is empty or when the item
to be deleted does not match the item in the list.

delete : Item→ List Item→Maybe (List Item)
delete x [] = nothing
delete x (y :: ys) = if x = = y then just ys else nothing

The case for cpy is a combination of both insert and delete. Lastly,
the end case only succeeds if the input is empty.

The operator

� : ∀ {A B C}→
(B→Maybe C)→ (A→Maybe B)→ (A→Maybe C)

(g � f) x with f x
. . . | nothing = nothing
. . . | just y = g y

is monadic composition on Maybe. The curly braces in the type sig-
nature surround implicit arguments in Agda. We can omit implicit

arguments when calling the function as long as Agda is capable of
inferring them from the context. The with keyword in Agda evalu-
ates an expression for pattern matching, and we can use . . . to imply
the repetition of the left-hand side for the with. The underscores in
� are placeholders for the arguments of a function. Agda allows

not only infix functions such as � , but also mixfix as we will see
later.

3.2 Diffing Lists
More interesting than patch is the implementation of diff. The goal
is to provide the shortest possible diff. To this end, we define a cost
function that increments for each edit operation

cost : Diff→ N
cost (ins d) = 1 + cost d
cost (del d) = 1 + cost d
cost (cpy d) = 1 + cost d
cost end = 0

and try to produce a value of type Diff fulfilling patch-diff-spec with
minimal cost. Other cost functions are of course possible, and we
discuss this adaptation in Section 9.

There is a naïve algorithm for diff defined as follows:

diff : List Item→ List Item→ Diff
diff [] [] = end
diff [] (y :: ys) = ins y (diff [] ys)
diff (x :: xs) [] = del x (diff xs [] )
diff (x :: xs) (y :: ys) = if x = = y then best3 else best2

where best2 = del x (diff xs (y :: ys))
u ins y (diff (x :: xs) ys )

best3 = cpy x (diff xs ys )
u best2

We have four cases to handle. If both lists are empty, the diff is
complete. If the source or target list is empty, we construct an insert
or delete, respectively. The last case is the most interesting one. If
both lists are non-empty, we compare all possible actions (copying
is only possible when the items in source and target are equal) and
select the best using _u_, the minimum of the total preorder on Diff
induced by cost.

_u_ : Diff→ Diff→ Diff
_u_ dx dy = if cost dx 6 cost dy then dx else dy

The naïve algorithm is inefficient because we have multiple
recursive calls at every step. However, there are several ways in
which we can improve the efficiency of the algorithm:

• Using a dynamic programming approach, we can share recur-
sive calls as much as possible.

• Given the cost function above, we can simply always copy if
copying is possible, because it will never lead to a higher cost.
If we choose to insert or delete an element when copying is
possible, we might need to compensate with a delete or insert
later, resulting in a higher cost.

• Instead of recomputing the cost of the patches at every recursive
step, we can pair the cost computation with the computation of
the diff itself. If the cost comparison is lazily evaluated, we can
also save on computation of the diff.

The diff problem is strongly related to the problem of finding the
longest common subsequence of two lists. Given the resulting Diff,
we can extract the longest common subsequence by looking only
at the cpy constructors. Similarly, when given the longest common
subsequence, we can easily extend it to a Diff by using the next
element in the common subsequence to resolve the critical choice
between ins and del.



4. Trees
Before we jump into the generic diff for families of datatypes, we
first look at a diff algorithm for (labeled, ordered) trees.

data Tree : Set where
node : Label→ List Tree→ Tree

Sometimes called a rose tree, this structure allows for each node to
have an arbitrarily-sized forest of subtrees. Much like the Item in
the list diff, the definition of Label is not important to the problem;
we only require an implementation of = = for labels.

We introduce a diff algorithm adapted from the works of Klein
[1998] and Lozano and Valiente [2004]; however, our presentation
is tailored so that the relationships to both the list diff above and
the forthcoming generic diff are evident. The cited algorithms work
with untyped, ordered trees. The Tree type is untyped in the sense
that the labels may contain anything and there are no (typed) con-
straints on children or siblings. In Section 4.3, we look at how un-
typed trees can serve as a representation for generic diffing and why
this is undesirable.

The Diff datatype for trees is nearly the same as that for lists.

data Diff : Set where
ins : Label× N→ Diff→ Diff
del : Label× N→ Diff→ Diff
cpy : Label× N→ Diff→ Diff
end : Diff

Along with the node’s Label in each constructor, we pair a number
representing its arity, the length of the list of children for each node.
The need for storing the arity will become clear in the following
description of patching.

4.1 Patching Trees
For the patch and diff functions, we do not give implementations
that work directly with Tree arguments as one might expect. In-
stead, we use lists of trees. The reason is that in intermediate stages
of both patch and diff, situations where we have to deal with mul-
tiple subtrees arise naturally. (If desired, one could easily write a
wrapper for each function to hide the use of lists.)

To see why lists of trees are in general required, consider

node a (node b [] :: node c [] :: node c [] :: [])

that uses abstract labels a, b, and c. We can depict the tree as
a

b c c

Applying the partial diff del (a,3) to this tree (which effectively
removes the node labeled a) will no longer leave a single tree.
Instead, we end up with a list of three trees:

b ; c ; c

From this point, adding another label by applying the partial diff
ins (d,2) reduces the number of trees to two:

d

b c

; c

As a side note, observe how the arity associated with the label in
each edit operation indicates the number of subtrees exchanged for
one node. Specifically, the application of del (a,3) produces three
new trees from one node in the source list while ins (d,2) consumes
two trees to form a new one.

With the idea in mind of lists of trees whose length varies as we
insert or delete nodes, we can now implement the patch function.
When compared to the patch for lists, its type signature changes to

patch : Diff→ List Tree→Maybe (List Tree)

but its definition remains exactly the same. We only need to reim-
plement the insert and delete functions:

insert : Label× N→ List Tree→Maybe (List Tree)
insert (x,n) yss with splitAt n yss
. . . | (ys,yss′) = if length ys = =N n

then just (node x ys :: yss′)
else nothing

delete : Label× N→ List Tree→Maybe (List Tree)
delete (x,n) [] = nothing
delete (x,n) (node y ys :: yss) = if (x = = y) ∧ (n = =N length ys)

then just (ys ++ yss)
else nothing

Unlike the insert for the list patch, the insert for trees can fail. For
it to succeed in inserting a node, there must be enough children that
can be consumed from the list of trees. We check that by calling
splitAt, a function from Agda’s standard libraries that splits a list at
a given position. The result is a pair consisting of ys and yss′. If
there are insufficient elements in yss, then ys will contain less than
n elements, and insert returns nothing.

The delete function ensures that the list is non-empty, as it did
with the list version. Additionally, it checks that both the label and
the arity of the root node at the head of the list match the label and
arity to be deleted. If all checks pass, delete results in the tail of the
list appended to the subtree list of the deleted node.

4.2 Diffing Trees
The diff algorithm on trees is defined as follows:

diff : List Tree→ List Tree→ Diff
diff [] [] = end

diff [] (node y ys :: yss) =
ins (y,length ys) (diff [] (ys ++ yss))

diff (node x xs :: xss) [] =
del (x,length xs) (diff (xs ++ xss) [])

diff (node x xs :: xss) (node y ys :: yss) =
if (x = = y) ∧ (length xs = =N length ys) then best3 else best2

where

best2 = del (x,length xs) (diff (xs ++ xss) (node y ys :: yss))
u ins (y,length ys) (diff (node x xs :: xss) (ys ++ yss))

best3 = cpy (x,length xs) (diff (xs ++ xss) (ys ++ yss))
u best2

The structure of the function is very similar to the diff on lists
(Section 3.2), only that now our inputs are lists of trees rather than
lists of items. Focusing on the last case, we compare the labels and
arities of the root nodes. We then select the best solution among the
choices of deleting the source label, inserting the target label, or –
when applicable – copying the label.

4.3 Discussion
There are several points to highlight regarding the tree diffing and
patching implementations. One important difference between the
list diff and the tree diff lies in the unit of work for an edit operation.
Recall that the arguments to the former have the type List Item while
those of the latter have the type List Tree. While the list diff operates
on a single Item at a time, the tree diff does not operate on a whole
Tree at a time. Instead, tree diffing works with nodes of the first
tree. For example, the delete operation on the list node x xs :: xss
removes the label x and prepends the xs to xss to get the new list of
trees.

We also note an important similarity between the two diff im-
plementations: both source and target are traversed in a fixed order.
For lists, each element is considered in order, and for trees, we per-
form a depth-first preorder traversal. This similarity allows us to



reduce tree diff to a list diff by flattening the source and target trees
in preorder and considering each item to be a pair of a label and an
arity. This reduction makes it clear that we can employ the same
dynamic programming approach that is known from list diff to the
tree diff situation (see Section 6).

It is possible to use tree diff and patch with typed values. We
transform the input into the untyped form and then parse the output.
Unfortunately, this approach provides no guarantee that, if patching
succeeds, we get a well-typed result. As an example, consider the
following family consisting of two mutually recursive datatypes:

mutual
data Expr : Set where

add : Expr→ Term→ Expr
one : Expr

data Term : Set where
neg : Expr→ Term

Now, consider the following Diff with labels (reflecting the con-
structor names) and the appropriate arities:

badDiff = ins (add,2) $ ins (one,0) $ ins (one,0) $ end

Evaluating patch badDiff [] yields the singleton

add

one one

which does not correspond to a well-typed expression. The tree
patch and diff obey the patch-diff-spec; however, patch cannot ex-
clude values such as badDiff even though they produce ill-typed
terms. This is an issue that we aim to fix in the following section.

5. Families
Our goal now is to define implementations of patching and diffing
that generically support families of (mutually recursive) datatypes
with a representation that preserves types. We describe a universe
to uniformly represent datatype families. Using this universe, we
present a new Diff datatype and new, type-safe patch and diff func-
tions. Later, we discuss how to implement the same functionality in
Haskell for practical use (Section 7) as well as possible extensions
to our approach (Section 8).

5.1 Universes
In order to write a generic diff algorithm that works on a large
number of different datatypes, we first need a uniform description
of a datatype. In the dependently typed world, this can be achieved
using a universe construction [Benke et al., 2003, Morris, 2007,
Oury and Swierstra, 2008]. A universe consists of a datatype of
codes and an interpretation function that maps codes to types. We
define generic functions by induction on the codes.

There are multiple universes suitable for generic programming.
We use one that is the most appropriate for our purposes, one that
corresponds closely to the labeled trees we considered in Section 4.
Our codes describe a family of (mutually recursive) datatypes as an
ordered, tree-like collection of lists. Contrary to other approaches,
our view leads to a natural definition of Diff where ins, del, and
cpy operate on constructors and lists. Our approach is a sum-of-
products view, with sums and products of arbitrary arity. Compared
to the oft-used binary sum-of-products view, we do not need to
consider the restrictions of binary structure and nesting.

To begin defining the universe, we fix the number of datatypes
in the family. Agda allows us to do so with a parameterized module:

module Codes (n : N) where

Given n datatypes in a family, we can refer to a member with a
number from 0 to n− 1. We define type synonyms for the index of
a type in the family and for lists of these indices:

TypeIx : Set
TypeIx = Fin n

TypeIxs : Set
TypeIxs = List TypeIx

The type Fin n (defined in Agda’s standard library) represents a
finite range of n natural numbers with constructors zero and suc.
For example, the possible values of type Fin 3 are zero, suc zero,
and suc (suc zero).

5.2 Codes
The codes in our universe are described by the following types:

Con : Set
Con = TypeIxs

Type : Set
Type = List Con

Fam : Set
Fam = Vec Type n

A family Fam is described by a fixed-length vector of n types (one
entry for each type member). A type Type consists of a list of
constructors. Each field of a constructor is a reference to a type
in the family, therefore Con is a list of type indices.

5.3 Representing a Family
Before we see how to interpret the codes as datatypes, let us first
look at how to represent the family of expressions and terms from
Section 4.3. While this is clearly a toy example, it nevertheless
serves to illustrate two mutually recursive datatypes and construc-
tors with various arities.

First, in order to encode the family, we declare a new module
and open the Codes module, passing the number of datatypes
forming our family.

module ExampleCodes where
open Codes 2

For the sake of readability, we give meaningful names to the type
indices:

exprIx : TypeIx
exprIx = zero

termIx : TypeIx
termIx = suc zero

Next, we give the codes for constructors and types. The type
Term has just one constructor, neg (now encoded as ‘neg’), and neg
has an argument of type Expr (now encoded as exprIx).

‘neg’ : Con
‘neg’ = exprIx :: []

‘term’ : Type
‘term’ = ‘neg’ :: []

We also define the codes ‘add’ and ‘one’ for the constructors add and
one, respectively, and sequence them in ‘expr’ for the type Expr:

‘add’ = exprIx :: termIx :: []
‘one’ = []
‘expr’ = ‘add’ :: ‘one’ :: []

Lastly, we group the descriptions ‘expr’ and ‘term’ together to build
our ‘example’ family:

‘example’ : Fam
‘example’ = ‘expr’ :: ‘term’ :: []

Note that we must place the codes in the vector ‘example’ in the
order indicated by the indices exprIx and termIx. This order is not
enforced by the types.



5.4 Interpretation
We have specified codes, and now we define an interpretation
function that maps the codes to types. As with Codes, we define
an Interpretation module abstracting over the number of types in
the family. We open the Codes module in order to use the codes
while defining the interpretation.

module Interpretation (n : N) where
open Codes n

In order to define the interpretation function, we need a datatype
of environments Env. Environments are heterogeneous lists param-
eterized by an interpretation function I and indexed by a list of
codes:

data Env {A : Set} (I : A→ Set) : List A→ Set where
[] : Env I []

:: : ∀ { tx txs}→ I tx→ Env I txs→ Env I (tx :: txs)

An environment of type Env I txs contains one element for each
code in txs. By applying the interpretation function I to a code in
txs, we get the type of the element in the environment. Note that
Agda allows us to reuse the List constructors in Env: the context
will serve to disambiguate between the two datatypes.

We use environments to store the fields of constructors. The
fields have different types described by the constructor code Con.
Here are the interpretation functions for Con, Type and Fam:

CJ K : Con → (TypeIx→ Set) → Set
CJ K C I = Env I C

TJ K : Type→ (TypeIx→ Set) → Set
TJ K T I = Σ (Fin (length T)) (λ c→ CJ lookup c (fromList T) K I)

FJ K : Fam → (TypeIx→ Set)→ TypeIx→ Set
FJ K F I t = TJ lookup t F K I

For each interpretation function, we assume that we have an exist-
ing interpretation function I. We will tie the knot shortly.

The function FJ K accepts a family F and a type index t. In
return, the function gives the interpretation of that type in this
family. Recall that F is a vector of n types and that t ranges between
0 and n− 1. We can thus use lookup (from the standard library) to
determine the Type for interpretation.

To get the interpretation of a type, we apply TJ K to a type
code T (a list of constructors). Semantically, the interpretation is
the type of a constructor application (to zero or more arguments),
which we represent with a dependent pair Σ. In a dependent pair,
the second component is a function that takes the value of the
first component. In our case, the first component of the pair is
the type of a constructor index (constrained by the number of
constructors in T), the second component is a function that returns
the interpretation for the types of the arguments for that constructor,
using CJ K. The function fromList turns a list into a vector.

Given a constructor code C, the function CJ K returns the inter-
pretation of its list of fields. Now, it is apparent why CJ K uses the
environment Env: a value of Env I C contains the interpretation of
every field of C. It is for this reason that we need to pass the inter-
pretation function I through each of level of the interpretation from
the top.

We can now tie the knot using a fixed-point datatype for the
interpretation function.

data µ (F : Fam) (t : TypeIx) : Set where
〈 〉 : FJ F K (µ F) t→ µ F t

A value of type µ F t contains an isomorphic interpretation of a
value of the type encoded by the index t in the family F. To give
an intuition of how this works, we describe the value isomorphic to
the constructor one.

oneµ : µ ‘example’ exprIx
oneµ = 〈 suc zero,[] 〉

The type of oneµ tells us that the family is given by ‘example’ and
the type index is exprIx. The value inside the 〈 〉 is a dependent
pair whose type is TJ ‘expr’ K (µ ‘example’). The first component of
the pair is the constructor index and the second component is the
environment (which is empty since one has no fields).

5.5 Defining Diff

As we did with the descriptions for lists and trees, we look at the
Diff datatype for families. First, we are generic in the family, so we
abstract over a Fam using a parameterized module:

module GenericDiff (F : Fam) where

Note that we define the module GenericDiff nested within the
Interpretation module. This means that we now abstract over both
the number n and the family F of datatypes.

In the spirit of the tree diff, the generic diff operates on con-
structors of datatypes in the family F. The type of the constructor
index depends on the type index:

ConIx : TypeIx→ Set
ConIx t = Fin (length (lookup t F))

To find the valid range of constructor indices described by ConIx t,
we look up the length of the list of constructors for the type index t.

We will find that we quite often need both a type index and
a constructor index together; therefore, we define the following,
convenient type synonym for this dependent pair:

Ixs : Set
Ixs = Σ TypeIx ConIx

We also introduce functions to access values from the Ixs:

typeix : Ixs→ TypeIx
typeix (t,c) = t

fields : Ixs→ TypeIxs
fields (t,c) = lookup c (fromList (lookup t F))

The function typeix projects out the type index, and fields deter-
mines the type indices of the constructor arguments (its “children”).

We are now able to define the Diff datatype. It contains the fa-
miliar constructor names; however, the Diff datatype is now indexed
over two lists of type indices, encoding the types of the source and
target trees.

data Diff : TypeIxs→ TypeIxs→ Set where
ins : { txs tys : TypeIxs}→ (i : Ixs) →

Diff txs (fields i ++ tys)→
Diff txs (typeix i :: tys)

del : { txs tys : TypeIxs}→ (i : Ixs) →
Diff (fields i ++ txs) tys →
Diff (typeix i :: txs) tys

cpy : { txs tys : TypeIxs}→ (i : Ixs) →
Diff (fields i ++ txs) (fields i ++ tys)→
Diff (typeix i :: txs) (typeix i :: tys)

end : Diff [] []

The extra type information allows us to read off how the construc-
tors of Diff affect the types of the trees involved. For instance, the
del constructor informs us that we can only delete a constructor (en-
coded by i) if the head of the source type indices list has the type
typeix i. As with diff on untyped trees, deleting i will prepend its
children (fields i) to the source list. Inserting a constructor has sim-
ilar constraints on the target, and copying a constructor likewise
affects both source and target.

To demonstrate the use of Diff, we revisit the badDiff example
from Section 4.3. In order to translate it to the current setting, we
define the constructor indices

oneIx : ConIx exprIx
oneIx = suc zero



addIx : ConIx exprIx
addIx = zero

and then consider the Diff

ins (exprIx,addIx) $ ins (exprIx,oneIx) $ ins (exprIx,oneIx) $ end

This Diff is now ill-typed. Looking at the partial Diff

ins (exprIx,oneIx) $ ins (exprIx,oneIx) $ end

we can see that it is of type

Diff [] (exprIx :: exprIx :: [])

i.e. a Diff that creates two expressions. On the other hand, the partial
Diff

ins (exprIx,addIx)

has the type

∀ { txs tys}→ Diff txs (exprIx :: termIx :: tys)→ Diff txs (exprIx :: tys)

The types show that the latter expression expects a Diff producing
an Expr and a Term and is therefore not compatible with the former.

It is interesting to note that we might have defined Diff as
follows:

µEnv : TypeIxs→ Set
µEnv = Env (µ F)

data Diff : ∀ { txs tys}→ µEnv txs→ µEnv tys→ Set where
. . .

The µEnv function lifts the interpretation of the family µ F to an
environment, such that this version of Diff is indeed indexed over
actual values and not just their types. Which version to prefer
is to some extent a question of taste. However, the version we
presented reflects the amount of information we typically expect
to be statically available: we expect to know the types of the trees
involved in a change, but not the actual trees. Furthermore, we
decided in Section 3 to consider a Diff datatype that completely
determines both the source and the target tree. We describe variants
of the Diff in Section 8 in which this is no longer the case. If Diff is
indexed only by the types, such generalizations are easier. A final
point is that the first variant allows the current version of Agda to
infer type of a value of Diff. This is minor but useful in a practical
sense.

5.6 Prerequisites for patch and diff

Before we can describe the implementations of patch and diff for
families, we need a few utility functions for working with the types
in our universe.

The first prerequisite is the ability for patch to manipulate envi-
ronments in a few list-like ways. The need for this arises because
we use µEnv (a synonym for Env (µ F)) to represent the source and
target arguments in the patch and diff functions. Recall the uses of
++ and splitAt the tree versions of delete and insert, respectively.
In a similar way, we need append and split operations for Env. For
example, given environments Env I txs and Env I tys, we can con-
struct the environment Env I (txs ++ tys) by appending the second
environment to the first with the following function:

+++ : {A : Set} { I : A→ Set} { txs : List A} { tys : List A}→
Env I txs→ Env I tys→ Env I (txs ++ tys)

[] +++ ys = ys
(x :: xs) +++ ys = x :: (xs +++ ys)

The definition is the same for list append, but it is typed for envi-
ronments with the “shape” indicated in the signature.

The reverse operation is perhaps more interesting. Given an
environment such as Env I (txs ++ tys) (whose shape is txs ++ tys),
we want to split it into two environments of Env I txs and Env I tys.
To achieve this, we define a function that splits the environment and
passes the result to a continuation function.

splitEnv : {A R : Set} { I : A→ Set} (txs : List A) { tys : List A}→
Env I (txs ++ tys)→ (Env I txs→ Env I tys→ R)→ R

splitEnv [] xs k = k [] xs
splitEnv ( :: txs) (x :: xs) k = splitEnv txs xs (λ ys zs→ k (x :: ys) zs)

The second issue we need to tackle is semi-decidable equality
on indices. Consider the Item and Label types that we used for
lists and trees. We described them as abstract, yet only requiring
equality. This check was used when defining delete, and for the
generic operation, we also need equality on constructor indices.

The standard library for Agda has a datatype for propositional
equality. A value of type x ≡ y encodes the equality of x and
y. Pattern matching on the only constructor refl informs the type
checker that types x and y are equal.

We can define an equality function for Fin (the type of indices)
that returns not just a Bool, but an optional equality proof:

?=Fin : {n : N}→ (x y : Fin n)→Maybe (x≡ y)
zero

?=Fin zero = just refl

(suc m) ?=Fin (suc n) with m
?=Fin n

. . . | nothing = nothing

(suc m) ?=Fin (suc .m) | just refl = just refl
?=Fin = nothing

The dot pattern used for .m is Agda’s notation indicating that the
value m is determined by type constraints resulting from other parts
of the pattern matching, in this case from the equality function.

The function ?=Fin will be useful for delete; however, we also
need to check the index pair Ixs for diff. We can define a similar
equality test:

?=Ixs : (ix iy : Ixs)→Maybe (ix≡ iy)
(tx,cx) ?=Ixs (ty, cy) with tx

?=Fin ty
. . . | nothing = nothing

(tx,cx) ?=Ixs (.tx,cy) | just refl with cx
?=Fin cy

. . . | nothing = nothing

(tx,cx) ?=Ixs (.tx,.cx) | just refl | just refl = just refl

We will see in the discussion of diff in Section 5.8 why a boolean
equality is not enough.

We now have the equipment we need to write generic patch and
diff.

5.7 Patching Families
The type of the patch function explicitly relates the additional
information available in the Diff type to the types of the source and
target trees:

patch : { txs tys : TypeIxs}→
Diff txs tys→ µEnv txs→Maybe (µEnv tys)

As we discussed above, we chose to index Diff only over the types
of source and target trees, but not the actual values. This means that
despite the additional type information, patch is still partial.

Once again, the definition of patch is the same as in Section 3.1.
All we have to do is adapt the insert and delete functions. Let us
look at insert first:

insert : { ts : TypeIxs}→ (i : Ixs)→
µEnv (fields i ++ ts)→Maybe (µEnv (typeix i :: ts))

The type dictates that the environment that is passed is of the shape
fields i ++ ts. In order to get access to the fields of the inserted
constructor, we need to split the environment into the fields i part
and the part that is given by ts. This is where splitEnv comes in:

insert (t,c) xss = splitEnv (fields (t,c)) xss
(λ xs ys→ just (〈 c,xs 〉 :: ys))

Note that like insert for lists but unlike that for trees, insert cannot



fail. The type signature dictates that suitable children are present,
and so insertion always succeeds.

Next, consider delete:

delete : { ts : TypeIxs}→ (i : Ixs)→
µEnv (typeix i :: ts)→Maybe (µEnv (fields i ++ ts))

For the first time, our types are expressive enough to allow us to
distinguish the signatures of insert and delete. Here, we know that
our list of source trees is not empty. We can therefore match on the
first element:

delete (t,c) (〈 c′,xs 〉 :: xss) with c
?=Fin c′

delete (t,c) (〈 .c,xs 〉 :: xss) | just refl = just (xs +++ xss)
. . . | nothing = nothing

If the root constructor matches the one scheduled for deletion, we
do so using our append function +++ for environments. Other-
wise, patching fails.

5.8 Diffing Families
Like patch, the diff function also operates on interpreted environ-
ments:

diff : ∀ { txs tys}→ µEnv txs→ µEnv tys→ Diff txs tys

Note how the shapes of the environments determine the type of the
resulting Diff.

The definition of diff is very similar to the tree version from
Section 4.2:

diff { []} { []} [] [] =
end

diff { tx :: } { []} (〈 cx,xs 〉 :: xss) [] =
del (tx,cx) (diff (xs +++ xss) [])

diff { []} { ty :: } [] (〈 cy,ys 〉 :: yss) =
ins (ty,cy) (diff [] (ys +++ yss))

diff { tx :: } { ty :: } (〈 cx,xs 〉 :: xss) (〈 cy,ys 〉 :: yss)
with ((tx,cx) ?=Ixs (ty,cy))

. . . | nothing = ins (ty,cy) (diff (〈 cx,xs 〉 :: xss) (ys +++ yss))
u del (tx,cx) (diff (xs +++ xss) (〈 cy,ys 〉 :: yss))

diff { tx :: } { .tx :: } (〈 cx,xs 〉 :: xss) (〈 .cx,ys 〉 :: yss)
| just refl = ins (tx,cx) (diff (〈 cx,xs 〉 :: xss) (ys +++ yss))

u del (tx,cx) (diff (xs +++ xss) (〈 cx,ys 〉 :: yss))
u cpy (tx,cx) (diff (xs +++ xss) (ys +++ yss))

The main difference is that in the final cases, we make use of the
equality test on index pairs that we defined in Section 5.6. It is this
equality test that allows us to learn that tx and ty as well as cx and cy
are equal. Knowing that they are the same tells us where to use the
cpy constructor. Since we use the same type indices for the source
and target in cpy, applying it in the fourth diff case would result in
a type error.

6. Memoization
Up to this point, we have generalized the well-known list diff algo-
rithm via an untyped tree diff algorithm to a generic typed diff that
works on families of mutually recursive algebraic datatypes. How-
ever, all of the implementations we have presented are inefficient
because we calculate the same subproblems many times. In all ver-
sions, the diff algorithm in the general case contains either two or
even three recursive calls to itself, computing subproblems of the
original problem and comparing them.

To make the algorithm more efficient, we need to restructure it
in such a way that we can reuse solutions to subproblems as much
as possible. The key insight that is being used for the list diff is
that the order of subsequent insert and delete operations does not
matter. Deleting a character and inserting one leads to the same
subproblem as inserting first and then deleting. By arranging the

subproblems in a two-dimensional table, it is possible to make this
reuse precise.

The same idea is applicable to the tree diff and the generic diff.
The reason is that the tree diff and hence the generic diff make use
of a fixed traversal through the source and target trees, namely a
depth-first preorder traversal. Thus, deleting and then inserting a
label or constructor still leads to the same subproblem as inserting
first and then deleting.

The tricky part that distinguishes the generic situation from
both the list and tree diff settings is that if we try to place all the
subproblems in a two-dimensional table, the table entries are of
different types, as the recursive calls of diff are of different types.
We therefore have to define a customized table datatype that makes
it possible to keep track of the types of all the subproblems.

We should note at this point that despite the tabulation effort, the
Agda version of our code will not get any more efficient. Currently,
the Agda implementation makes use of a call-by-name evaluation
strategy, and even when the Haskell backend is invoked, sharing
can be lost. However, it is possible to express the tabulation idea
in Agda, and just like the rest of the code, we have reimplemented
this part in Haskell (see Section 7) where the sharing is respected
and leads to a dramatic performance increase.

Laziness, on the other hand, is also helpful here. We can de-
scribe the tabulated algorithm in a straightforward way, and only
those parts of the table will be computed that are actually required
to determine the result of the main problem.

6.1 Table Datatype
When describing the table for the subproblems, we have to distin-
guish four different situations, depending on whether the source list
of type indices is empty (nc), the target list is empty (cn), both lists
are empty (nn), or both lists are non-empty (cc).

The cc situation is the most interesting one and is sketched in
the following picture:

〈 cx,xs 〉 :: xss xs +++ xss . . .

〈 cy,ys 〉 :: yss

ys +++ yss

...

i

d

c

The source is of the form 〈 cx,xs 〉 :: xss of type µEnv (tx :: txs).
The target is of the form 〈 cy,ys 〉 :: yss of type µEnv (ty :: tys).
We can either delete cx, insert cy, or copy if cx and cy are the
same constructor. These three operations lead to three different
subproblems d, i and c, respectively, which involve the source
list xs +++ xss and the target list ys +++ yss, each resulting from
prepending the fields of a constructor to the list of remaining trees.

The picture shows that the c part can be shared when computing
d and i – even if cx and cy are not the same constructor and copying
is not possible.

Therefore, we define a table type DiffT where the cc always
contains three subtables. When computing a value of this type, we
will ensure that the c subtable is shared among the two others.
If either the source or target list is empty, the situation is much
simpler, because there is only one operation (either inserting or
deleting) the diff algorithm can choose. Hence, only one subtable
occurs in these constructors. And the nn case where both source
and target lists are empty marks the lower right corner of the table.



There are no subtables in this case.

data DiffT : TypeIxs→ TypeIxs→ Set where
cc : { txs tys : TypeIxs} (ix : Ixs) (iy : Ixs) →

Diff (typeix ix :: txs) (typeix iy :: tys)→
DiffT (typeix ix :: txs) (fields iy ++ tys)→
DiffT (fields ix ++ txs) (typeix iy :: tys)→
DiffT (fields ix ++ txs) (fields iy ++ tys)→
DiffT (typeix ix :: txs) (typeix iy :: tys)

cn : { txs : TypeIxs} (ix : Ixs) →
Diff (typeix ix :: txs) [] →
DiffT (fields ix ++ txs) [] →
DiffT (typeix ix :: txs) []

nc : { tys : TypeIxs} (iy : Ixs) →
Diff [] (typeix iy :: tys)→
DiffT [] (fields iy ++ tys)→
DiffT [] (typeix iy :: tys)

nn : Diff [] [] →
DiffT [] []

All of the table entries also contain the actual Diff between the
source and the target, and it is easy to define a function

getDiff : ∀ { txs tys}→ DiffT txs tys→ Diff txs tys

that extracts the Diff from a table.

6.2 Building the Table
The next goal is to write a function

diffT : ∀ { txs tys}→ µEnv txs→ µEnv tys→ DiffT txs tys

that builds a table for a given problem in a way that exploits sharing
of subtables. We can then define a much more efficient diff function
simply by calling diffT and applying getDiff to the resulting table.

Building the table is easy in an nn, nc or cn situation. For a
cc situation, the strategy is as follows: we start by computing c
(by calling diffT recursively), then use c in computing i and d, and
finally select the best result from the subproblems in order to fill in
the top-left corner of the table.

extendi

extendd

best

The picture illustrates the idea and the names of the functions
performing the tasks. The code for diffT is shown below.

diffT { []} { []} [] [] =
nn end

diffT { tx :: } { []} (〈 cx,xs 〉 :: xss) [] =
let d = diffT (xs +++ xss) []
in cn (tx,cx) (del (tx,cx) (getDiff d)) d

diffT { []} { ty :: } [] (〈 cy,ys 〉 :: yss) =
let i = diffT [] (ys +++ yss)
in nc (ty,cy) (ins (ty,cy) (getDiff i)) i

diffT { tx :: } { ty :: } (〈 cx,xs 〉 :: xss) (〈 cy,ys 〉 :: yss) =
let c = diffT (xs +++ xss) (ys +++ yss)

i = extendi c
d = extendd c

in cc (tx,cx) (ty,cy) (best i d c) i d c

Let us now look at the function best that as shown in the
picture above makes use of the tree subtables to compute the top-
left entry. It implements the algorithm we already know: The cost
of performing insertion and deletion is compared and the best

operation is selected; if the constructors are the same, copying is
considered as well:

best : ∀ { txs tys tx ty} {cx : ConIx tx} {cy : ConIx ty}→
DiffT (tx :: txs) (fields (ty,cy) ++ tys) →
DiffT (fields (tx,cx) ++ txs) (ty :: tys) →
DiffT (fields (tx,cx) ++ txs) (fields (ty,cy) ++ tys) →
Diff (tx :: txs) (ty :: tys)

best { } { } { tx} { ty } {cx} {cy } i d c

with (tx,cx) ?=Ixs (ty,cy)
. . . | nothing = ins (ty,cy) (getDiff i )

u del (tx,cx) (getDiff d)

best { } { } { tx} { .tx} {cx} { .cx} i d c
| just refl = ins (tx,cx) (getDiff i )

u del (tx,cx) (getDiff d)
u cpy (tx,cx) (getDiff c)

The functions extendi and extendd take the shared part of the
table and add another column in front or row on top, respectively.
We only show extendi – the definition of extendd is analogous.

extendi : ∀ { txs tys tx} {cx : ConIx tx}→
DiffT (fields (tx,cx) ++ txs) tys→ DiffT (tx :: txs) tys

extendi { } { []} { tx} {cx} d =
cn (tx,cx) (del (tx,cx) (getDiff d)) d

extendi { } { ty :: } { tx} {cx} d = extracti d (λ cy c→
let i = extendi c
in cc (tx,cx) (ty,cy) (best i d c) i d c )

When we want to add a column to the left, we have to know if there
is more than one row in the table we get. Depending on that, we
have to produce a cn or a cc. If the list of target trees is empty,
i.e., if we are in the final row of the table, we can only continue
by deleting. If there is more than one row in the table d we get,
we can extract the table c with the first row removed. On c we can
call extendi recursively to add a first column and get a table i. We
now have tables i, d and c again that are suitable to build a cc entry,
reusing the function best.

The last part missing is the function extracti. It takes a table
consisting of multiple rows and drops the topmost row. The func-
tion makes the extracted part of the table available in a continuation
argument. The implementation is simple: the type dictates that the
table can only be an nc or cc. In both cases, the desired subtable is
contained as a field of the constructor.

extracti : ∀ {R txs tys ty} →
DiffT txs (ty :: tys) →
((cy : ConIx ty)→

DiffT txs (fields (ty,cy) ++ tys)→ R)→ R
extracti (nc ( ,cy) i) k = k cy i
extracti (cc ( ,cy) i ) k = k cy i

The definition of our memoized generic diff is now complete.

7. Haskell
In this section we discuss a Haskell implementation of the generic
diff algorithm. The Haskell version has the advantages of being
far more efficient due to the use of actual sharing in the imple-
mentation. Furthermore, as a Haskell library it can actually be used
in the context of larger applications. On the other hand, since the
algorithm makes a significant use of dependent types, these con-
cepts have to be encoded in Haskell using language extensions
such as generalized algebraic datatypes (GADTs), type families
and higher-ranked types. The resulting code is partially cluttered
with traces of this encoding, which is why we have presented the
Agda version in this paper. In this section, we do not show the com-
plete Haskell implementation, but rather highlight the most impor-
tant differences and show how we encoded the dependently typed
aspects.



In particular, we have a look at how the universe is represented
in Haskell, and how the Diff datatype looks like.

7.1 Representing Families
In Agda, we could just define codes that describe datatypes and
then interpret them as types in a separate step. In Haskell, we have
to use GADTs to define codes and their interpretation together. At
the same time, we do somewhat more than in the Agda version. We
provide a way to define a description for an already existing (and
normally defined) family of mutually recursive datatypes such that
we can use the generic algorithm with these standard datatypes. In
contrast, the Agda interpretations of codes are only isomorphic, not
identical to the datatypes defined by means of data. Establishing
this isomorphism in Agda would be an additional step that we have
not shown.

As an example family, let us once more use simple expressions:

data Expr = One
| Add Expr Term

data Term = Neg Expr

Describing this family consists of multiple steps: first, we de-
fine a GADT that captures the structure of the family. Then, we
make the GADT an instance of a class Family that provides several
generic functions that we can then use in order to define the generic
diff algorithm. As a final step, we associate the family GADT with
the actual types contained in the family by means of a number of
type class instances of class Type.

The GADT for the family looks as follows:

data ExampleFamily ::∗→ ∗→ ∗ where
‘One’ :: ExampleFamily Expr Nil
‘Add’ :: ExampleFamily Expr (Cons Expr (Cons Term Nil))
‘Neg’ :: ExampleFamily Term (Cons Expr Nil)

It plays the same role as ‘example’ in the Agda version. For each
constructor in the family, we specify the result type and the list of
fields by giving their types. Note that the fields are specified as a
type-level list:

data Nil = Nil
data Cons x xs = Cons x xs

The type ExampleFamily is then made an instance of the Family
type class, which is shown below.

class Family f where
decEq :: f tx cxs→ f ty cys→Maybe (tx:=:ty,cxs:=:cys)
matcher :: f t cs→ t→Maybe cs
function :: f t cs→ cs→ t
string :: f t cs→ String

The methods of class Family reflect the functionality we need in or-
der to define generic diff. The function decEq corresponds closely
to the equality on index pairs ?=Ixs from Section 5.6. The differences
are that this time, we do not compare indices, but actual types, and
we return equality proofs in Haskell’s equality GADT :=:. The func-
tion matcher can be used to test whether a value of type t belongs
to a particular constructor, represented by f t cs. If matching suc-
ceeds, we get hold of the values of the fields of the constructor in
the list cs. Conversely, function can be used to actually construct a
t from arguments cs using a particular constructor. The last func-
tion string allows us to get a string representation of a particular
constructor.

Defining the actual instance of Family for ExampleFamily is
straightforward:

instance Family ExampleFamily where
decEq ‘One’ ‘One’ = Just (Refl,Refl)
decEq ‘Add’ ‘Add’ = Just (Refl,Refl)
decEq ‘Neg’ ‘Neg’ = Just (Refl,Refl)

decEq _ _ = Nothing

matcher ‘One’ One = Just Nil
matcher ‘Add’ (Add e t) = Just (Cons e (Cons t Nil))
matcher ‘Neg’ (Neg e) = Just (Cons e Nil)
matcher _ _ = Nothing

function ‘One’ Nil = One
function ‘Add’ (Cons e (Cons t Nil)) = Add e t
function ‘Neg’ (Cons e Nil) = Neg e

string ‘One’ = "One"
string ‘Add’ = "Add"
string ‘Neg’ = "Neg"

As a final step, we have to instantiate the class Type:

class (Family f)⇒ Type f t where
constructors :: [Con f t]

This type class associates actual types with a family GADT. The
method allows us to get the constructors specific to a particular
datatype in the family. The datatype Con wraps the representation
GADT such that the type of the fields of the constructor is hidden:

data Con :: (∗→ ∗→ ∗)→∗→ ∗ where
Con :: (List f cs)⇒ f t cs→ Con f t

Wrapped by Con, the constructor representations for one datatype
all have the same Haskell type and can therefore be put in a list. The
class List ensures that cs is a type-level list where each element is a
type of the family f again.

The instances we create for ExampleFamily are:

instance Type ExampleFamily Expr where
constructors = [Con ‘One’,Con ‘Add’]

instance Type ExampleFamily Term where
constructors = [Con ‘Neg’]

This is the complete boilerplate code we have to write in order
to instantiate our Haskell generic diff library to an actual family
of datatypes. While this is a significant amount, all of the code is
straightforward to write and can even be automatically generated
given the syntax tree of the datatype definitions, using a preproces-
sor or a meta-programming tool such as Template Haskell [Sheard
and Jones, 2002].

7.2 Diff Datatype
The Diff datatype in Haskell is very similar to its Agda counterpart.
Haskell lacks parameterized modules, hence – as with the generic
functions – the datatype is explicitly parameterized over the fam-
ily f.

data Diff :: (∗→ ∗→ ∗)→∗→ ∗→ ∗ where
Ins :: (Type f t,List f cs, List f tys)⇒ f t cs→

Diff f txs (Append cs tys) →
Diff f txs (Cons t tys)

Del :: (Type f t,List f cs,List f txs) ⇒ f t cs→
Diff f (Append cs txs) tys →
Diff f (Cons t txs) tys

Cpy :: (Type f t,List f cs,List f txs,List f tys)⇒ f t cs→
Diff f (Append cs txs) (Append cs tys) →
Diff f (Cons t txs) (Cons t tys)

End :: Diff f Nil Nil

The appending of type-level lists is described by the type-level
function Append, which is defined with a type family:

type family Append txs tys ::∗
type instance Append Nil tys = tys
type instance Append (Cons tx txs) tys = Cons tx (Append txs tys)

7.3 Patching and Diffing
Using the Diff datatype above, it is quite easy to define patch
in Haskell. For diff, however, some effort is required in order to



convince Haskell’s type checker that the definition is okay. We
make use of additional GADT witness arguments of type IsList that
encode proofs that certain values are indeed type-level lists.

Furthermore, given a value of a Haskell datatype belonging to
the family, we have to be able to discover the constructor of that
value. We make use of a function

matchConstructor :: (Type f t)⇒ t→
(∀cs.f t cs→ IsList f cs→ cs→ r)→ r

that takes a value of type t and a continuation that will be applied
to the representation f t cs of the constructor that matches t.

Not only can diff be defined this way, but so can diffT and the
extensions that we discuss in the next section.

We have instantiated the diff function for a datatype family
that represents a JSON abstract syntax tree. The example shown
in Section 1 is output from that function. The implementation also
employs the extensions discussed in the following section.

8. Extensions
We have deliberately restricted ourselves to a simple setting in the
exposition so far. There are several variations of the diff problem,
more than we can possibly adequately discuss in the given space.
However, we want to present two extensions to the simple algo-
rithm above that we have implemented and that are rather essen-
tial in making the resulting library actually useful. Both extensions
have been implemented in both the Agda and the Haskell versions.

Firstly, we show how the universe we use can be extended to
cover constants, i.e., abstract types for which we have an equality
function, but no further information about their structure.

Secondly, we discuss how patches can be compressed signifi-
cantly by allowing the possibility to copy not only single construc-
tors, but entire subtrees at once.

We mention more possible extensions when we discuss future
work (Section 9).

8.1 Constants
While our universe can in theory represent types with very many
or – using laziness – even infinite numbers of constructors such
as Char and N, it is clearly not efficient to use codes in this way.
Instead, it is desirable to represent such types as abstract types in
our family. To be usable in patching and diffing, an abstract type
must admit an equality test. We therefore represent abstract types
as a simple record, containing the type and the equality test for that
type. In Haskell, we use a type class instead.

record Abstract : Set where
field type : Set

decEq : Decidable { type} ≡

Usually, a Set field must not occur in a record of type Set, and we
would have to give Abstract a larger type Set1. However, Agda has
a flag to assume Set : Set, and we use it here in a non-essential way
to save the work of having to lift most of our other definitions into
Set1 as well.

We now have several choices for where to put the distinction
between concrete and abstract types in our codes. Putting it in the
Fam vector type (e.g. Vec (Either Type Abstract) n) works but is a
bit cumbersome. We decided to convert Type, making it a datatype
with two constructors.

data Type : Set where
concr : List Con→ Type
abstr : Abstract→ Type

In Haskell, we instead extend the Con type with a constructor
Abs such that the instances of the Type type class can produce a
singleton list containing an Abs constructor for abstract datatypes.

The behaviour for abstract types is as follows: each value of an
abstract type is treated as a constructor with no fields. Because we
have to compare two values in the diff algorithm in order to see
whether we can copy, we need the equality function on the type.
As a consequence of introducing abstract types, the following parts
of the implementation need to be adapted:

• The interpretation function TJ K becomes a datatype. We can
then pattern match on the constructors of TJ K in the imple-
mentation of diff and treat abstract types differently.

• The Ixs type becomes a datatype that in case of an abstract type
saves the actual value of that type, since we do not have a code
to represent it.

• The ?=Ixs function either uses the original ?=Ixs function or
the equality test from the Abstract record.

8.2 Compression
When a complete (sub)expression can be copied, we can take a
shortcut and not go through the trouble of traversing and copying
each constructor. To support that, we extend the Diff datatype with
a new constructor

data Diff : TypeIxs→ TypeIxs→ Set where
. . .
cpyTree : ∀ { txs tys t}→ Diff txs tys→ Diff (t :: txs) (t :: tys)

In Section 3 we have discussed that our Diff datatype so far contains
sufficient information to reproduce both the source and target trees.
The point of using a Diff is usually to describe a change in an
invertible, but relatively concise format. Large parts of the tree
that remain unchanged are therefore rather uninteresting, hence we
decide here to omit the copied tree in the cpyTree constructor. This
is similar to the behaviour of the UNIX diff command, which
also excludes information that is the same in both files in its output
formats. If desired, an additional argument of type µ F t storing the
value can easily be added.

Adapting patch to handle cpyTree occurrences is trivial.
We produce applications of cpyTree by post-processing values

of type Diff generated by the diff algorithm, using a function

compress : ∀ { txs tys}→ Diff txs tys→ Diff txs tys

The compression function traverses the Diff recursively, replacing
the cpy of a constructor with a cpyTree of its type whenever all the
fields of the constructor are also copied using cpyTree.

Similar to cpyTree, we can also add insTree and delTree con-
structors that can insert or delete a whole tree at once. In the insTree
case, we need to store the actual value being inserted. While this
does not compress the size of the Diff as much as cpyTree does, it
may still allow patch to work more efficiently.

9. Conclusions
This paper shows how diffing and patching evolve from the simple
to the more general (and complex). Beginning with easily under-
stood lists of items, we adapt the functions for labeled (untyped)
rose trees. Then, utilizing a universe, we define type-safe diff and
patch functions for families of (mutually recursive) datatypes. To
improve the efficiency, we demonstrate the changes necessary for
memoization. Our approach relies on features of advanced type sys-
tems in modern functional programming languages. The presenta-
tion of the code uses Agda for clarity and conciseness; however, we
also discuss the implementation of a library in Haskell4 . Lastly, we
briefly mention some possible extensions.

There remains significant interesting work left to do. For ex-
ample, we should experiment with cost functions. The previously

4 We plan to release a Haskell package on the Hackage repository.



defined function simply counts the number of edit operations uni-
formly, but we might prefer edits that affect few larger parts over
equivalent ones that affect many small parts. Alternatively, we
might assign different costs to constructors of different datatypes.

There is a large amount of potential work with optimization,
possibly at the cost of conceptual elegance. It is reasonable to
employ heuristics for diff to find an edit script that is good enough,
though not necessarily optimal.

Our generic diff implementation is based on algorithms for or-
dered trees. We should also consider unordered trees. This is help-
ful for expressing the fact that two operands of a binary operator
have been swapped, which is more concise than deleting one of the
operands and reinserting it at another place.

In general, it seems worthwhile to investigate the typical oper-
ations performed on typed tree data and consider ways to better
describe such changes than on a per-constructor basis.

We will explore the use of our library more in real-word ap-
plications. This will help us experiment with various Diff types as
well as test a larger collection of datatypes. One good use for the li-
brary is a structure-aware version control system. Another option is
a graphical merge tool that visualizes the differences in structured
documents and supports moving selected changes from one version
into another.
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