
Trinity

Andres Löh

joint work with Ralf Hinze

Utrecht University

January 11, 2008

About me

PhD at Utrecht University, 2004: “Exploring Generic Haskell”

2005–2007 PostDoc at Bonn University, working with Ralf Hinze

since August 2007: lecturer at Utrecht University

interests:

functional programming (Haskell),
polytypic / datatype-generic programming,
type systems (dependent types)

Andres Löh Trinity 2

What is Trinity?

Trinity is a programming language designed by Ralf Hinze and me.

It is called Trinity because it supports

functional programming (strict, impure),
imperative programming,
object-oriented programming.

It looks a bit like ML (OCaml), but that is an accident . . .

Let’s have a look at some programs . . .

Andres Löh Trinity 3

What is Trinity?

Trinity is a programming language designed by Ralf Hinze and me.

It is called Trinity because it supports

functional programming (strict, impure),
imperative programming,
object-oriented programming.

It looks a bit like ML (OCaml), but that is an accident . . .

Let’s have a look at some programs . . .

Andres Löh Trinity 3

Hello world

put-line "Hello world"

Andres Löh Trinity 4

Factorial

function factorial (n : Nat) : Nat =
if n 0 then 1

else n ∗ factorial (n− 1)

Andres Löh Trinity 5

Overview

1 History

2 Design goals

3 Tour of Trinity

4 Conclusions

Andres Löh Trinity 6

History of Trinity

In the summer of 2006, Ralf Hinze devised fragments of a
programming language for a master-level course “Prinzipien von
Programmiersprachen” (Principles of Programming Languages).

It was decided at Bonn that there should be an introductory
(first-year) course on PL concepts (with an expected 200 students).
Ralf was supposed to teach that course, too.

Ralf had already written a toy implementation of his language
(without the typesystem) in Haskell in one weekend.

The idea was to reuse the language for the new course, and have an
implementation for the students to play with, to make the course less
theoretical.

Andres Löh Trinity 7

History – contd.

I joined at that point.

We started from Ralf’s original implementation, added types and
several more language features. Most language concepts were revised
(and often simplified) during the implementation.

The language was used under the name “BPL” (Bonn Programming
Language or Beginner’s Programming Language) in the course.
Student reactions were mixed.

Continued development toward a public release after the course in
2007. Renamed to Trinity. Stalled due to both of us moving
universities, but picked up the work during the Christmas break.

Andres Löh Trinity 8

Design goals of Trinity

Different paradigms:

value-oriented (functional) programming
effect-oriented (imperative) programming
object-oriented programming

Many concepts and language features. (Not a small language.)

Simple, orthogonal concepts. No artificial restrictions.

Types!

Relatively little amount of syntactic sugar, few convenience features.
(Writing large programs is not a primary goal.)

Clearly defined syntax and semantics.

Presentable in an incremental way.

Andres Löh Trinity 9

Design goals for the implementation

Straight-forward implementation. Easy to understand (at least for us).

Easy to extend (at least for us).

Convenient to use.

Sufficiently fast to run small example programs.

Andres Löh Trinity 10

Tour of Trinity

Example concepts.

Feature overview (not complete).

Various degrees of detail.

Focus on the functional part.

Andres Löh Trinity 11

Booleans – syntax

Expressions:

e ::= . . .
| true
| false
| if e1 then e2 else e3

Types:

τ ::= . . .
| Bool

Fragments are presented as extensions to the syntax.
Notational convention: types in red.

Andres Löh Trinity 12

Booleans – type rules

Σ ` false : Bool Σ ` true : Bool

The signature Σ is an environment mapping identifiers to types.

Σ ` e1 : Bool Σ ` e2 : τ Σ ` e3 : τ

Σ ` if e1 then e2 else e3 : τ

Andres Löh Trinity 13

Booleans – type rules

Σ ` false : Bool Σ ` true : Bool

The signature Σ is an environment mapping identifiers to types.

Σ ` e1 : Bool Σ ` e2 : τ Σ ` e3 : τ

Σ ` if e1 then e2 else e3 : τ

Andres Löh Trinity 13

Booleans – evaluation rules

Values:

v ::= . . .
| false
| true

Values are the results of evaluation.

false ⇓ false true ⇓ true

e1 ⇓ true e2 ⇓ v

if e1 then e2 else e3 ⇓ v

e1 ⇓ false e3 ⇓ v

if e1 then e2 else e3 ⇓ v

Big-step semantics . . .

Andres Löh Trinity 14

Excursion: Evolution of the evaluation rules

e ⇓ v

Starting point.

σ1 ‖ e ⇓ v ‖ σ2

Evaluation with a store: for mutable state (references).

e ⇓t v

Evaluation with an external effect: for input/output.

κ | e ⇓ v

Stack-based evaluation: for exceptions, continuations.
Andres Löh Trinity 15

Booleans – derived forms

Boolean operators are introduced as syntactic sugar:

e1 && e2 ≡ if e1 then e2 else false
e1 || e2 ≡ if e1 then true else e2

not e ≡ if e then false else true

In truth, ‘not’ is just a predefined function.

Andres Löh Trinity 16

Natural numbers

Natural numbers are the only numeric type:

Many standard functions work on natural numbers, not integers.

Floating-point computation is rarely required while teaching
programming languages.

Implementing other numeric types such as integers or rationals using
natural numbers actually serves as a nice exercise for datatypes.

e ::= . . .
| 0, 1, 2, . . . (numeric literal)

Andres Löh Trinity 17

Operators

There is a fixed set of operators on natural numbers:

e ::= . . .
| e1 + e2

| e1 − e2

| e1 ∗ e2

| e1 ÷ e2

| e1 % e2

| e1 � e2 (concrete syntax: #<)
| e1 6 e2 (concrete syntax: =<)
| e1 e2 (concrete syntax: ==)
| e1 6 e2 (concrete syntax: /=)
| e2 e2 (concrete syntax: >#)
| e2 > e2 (concrete syntax: >=)

Operator syntax is chosen such that arrow symbols and angle brackets
remain free.

Andres Löh Trinity 18

Declarations

Declarations:

d ::= . . .
| val x = e
| d1 d2 (sequencing)
| local d1 in d2 end

Expressions:

e ::= . . .
| x (identifier)
| let d in e end

Declarations and expressions are kept separate . . .

Andres Löh Trinity 19

Expressions vs. declarations

Σ ` e : τ Σ1 ` d : Σ2

The “types” of declarations are signatures.

e ⇓ v d ⇓ δ

The evaluation results of declarations are environments mapping identifiers
to values.

Andres Löh Trinity 20

Expressions vs. declarations

Σ ` e : τ Σ1 ` d : Σ2

The “types” of declarations are signatures.

e ⇓ v d ⇓ δ

The evaluation results of declarations are environments mapping identifiers
to values.

Andres Löh Trinity 20

Declarations – types and evaluation examples

Declaration of an identifier:

Σ ` e : τ

Σ ` val x = e : {x 7→ τ }
e ⇓ v

val x = e ⇓ {x 7→ v}

Sequence of declarations:

Σ1 ` d1 : Σ2 Σ1,Σ2 ` d2 : Σ3

Σ1 ` d1 d2 : Σ2,Σ3

d1 ⇓ δ1 d2δ1 ⇓ δ2

d1 d2 ⇓ δ1, δ2

Later declarations can refer to earlier ones.
Let:

Σ1 ` d : Σ2 Σ1,Σ2 ` e : τ

Σ1 ` let d in e end : τ

d ⇓ δ eδ ⇓ v

let d in e end ⇓ v

Andres Löh Trinity 21

Declarations – types and evaluation examples

Declaration of an identifier:

Σ ` e : τ

Σ ` val x = e : {x 7→ τ }
e ⇓ v

val x = e ⇓ {x 7→ v}

Sequence of declarations:

Σ1 ` d1 : Σ2 Σ1,Σ2 ` d2 : Σ3

Σ1 ` d1 d2 : Σ2,Σ3

d1 ⇓ δ1 d2δ1 ⇓ δ2

d1 d2 ⇓ δ1, δ2

Later declarations can refer to earlier ones.

Let:
Σ1 ` d : Σ2 Σ1,Σ2 ` e : τ

Σ1 ` let d in e end : τ

d ⇓ δ eδ ⇓ v

let d in e end ⇓ v

Andres Löh Trinity 21

Declarations – types and evaluation examples

Declaration of an identifier:

Σ ` e : τ

Σ ` val x = e : {x 7→ τ }
e ⇓ v

val x = e ⇓ {x 7→ v}

Sequence of declarations:

Σ1 ` d1 : Σ2 Σ1,Σ2 ` d2 : Σ3

Σ1 ` d1 d2 : Σ2,Σ3

d1 ⇓ δ1 d2δ1 ⇓ δ2

d1 d2 ⇓ δ1, δ2

Later declarations can refer to earlier ones.
Let:

Σ1 ` d : Σ2 Σ1,Σ2 ` e : τ

Σ1 ` let d in e end : τ

d ⇓ δ eδ ⇓ v

let d in e end ⇓ v

Andres Löh Trinity 21

Excursion: Implementation

Trinity
lex−→ tokens

parse−−−→ abstract syntax
desugar−−−−→ core

evaluate−−−−−→ value

Typechecking is an optional phase that operates on the abstract
syntax – it does not change the program.

The core language has no syntactic sugar, is untyped, and is more
uniform than the surface language – for example, declarations are
expressions, consequently first-class environments.

Evaluation as an abstract machine (bonus: tracing of evaluation).

Andres Löh Trinity 22

Excursion: Implementation

Trinity
lex−→ tokens

parse−−−→ abstract syntax
desugar−−−−→ core

evaluate−−−−−→ value

Typechecking is an optional phase that operates on the abstract
syntax – it does not change the program.

The core language has no syntactic sugar, is untyped, and is more
uniform than the surface language – for example, declarations are
expressions, consequently first-class environments.

Evaluation as an abstract machine (bonus: tracing of evaluation).

Andres Löh Trinity 22

Excursion: syntax

Keyword- rather than symbol oriented.

All declarations start with a keyword.

Most constructs have a closing keyword.

No braces, no separator between declarations required, neither is a
layout rule.

The whole Trinity grammar is LR without any twisting.

Andres Löh Trinity 23

Functions

Function application:
f@x or f x

Anonymous function:
fun x ⇒ e

(General) recursion:
rec x ⇒ e

Syntactic sugar: recursive function:

(function f x = e) ≡ (val f = rec f ⇒ fun x ⇒ e)

Andres Löh Trinity 24

More types

strings
"Hello world" : String

tuples, records (non-extensible, no first-class labels)
(1, "c") : (Nat,String)
(x = 1, y = "c") : (x = Nat, y = String)

type definitions
type coordinates = (Nat,Nat)

datatypes
data Bool = False | True

Type definitions and datatypes are declarations. There is no such concept
as top-level declarations.

Andres Löh Trinity 25

Datatypes

data List 〈a〉 = Nil | Cons (a, List 〈a〉)

Constructors must be fully applied, and can only have zero or one
argument.

Datatypes can be recursive.

Datatypes can be parameterized.

Type application is written using angle brackets.

Experimental: Currently all datatypes are open.

Andres Löh Trinity 26

Datatypes – contd.

(Parameterized) Datatypes lead naturally to pattern matching and
polymorphism.

function append 〈a〉 (xs : List 〈a〉, ys : List 〈a〉) =
case xs of

Nil ⇒ ys
| Cons (z, zs) ⇒ Cons (z, append (zs, ys))
end

Type abstraction is explicit.

Type application can be omitted in most situations, but can also be
given explicitly.

Thus higher-ranked (even impredicative) polymorphism.

Andres Löh Trinity 27

Pattern language

Patterns form their own syntactic category.
General and- and or-patterns:

p1 & p2 (generalization of Haskell as-patterns)
p1 | p2 (both patterns have to bind the same variables)

Example:

data Maybe 〈a〉 = Nothing | Just a

function plus (x : Maybe 〈Nat〉, y : Maybe 〈Nat〉) : Maybe 〈Nat〉 =
case (x, y) of

(Nothing, z) | (z,Nothing) ⇒ z
| (Just x, Just y) ⇒ Just (x + y)
end

Andres Löh Trinity 28

Datatypes – Subtleties

Treating datatypes as “normal” declarations leads to subtle semantics:

let data X = C Bool
function f (x : X) : Bool = case x of C y ⇒ not y end
data X = C Nat

in
f (C 42)

end

Andres Löh Trinity 29

Arrays and References

Parameterized built-in types.

[1, 2, 3] : Array 〈Nat〉
array [10] i ⇒ i ∗ i : Array 〈Nat〉
let

val x : Ref 〈Nat〉 = ref 2
in

x := !x + 1; !x
end

References introduce impurity.

The sequencing operator is syntactic sugar:
e1; e2 ≡ let val = e1 in e2 end

Andres Löh Trinity 30

Subtlety: effects and polymorphism

val r : forall 〈a〉 ⇒ Ref 〈Maybe 〈a〉〉 =
fun 〈a〉 ⇒ ref Nothing

ML has the value restriction to prevent polymorphic values like this.

In Trinity, the above is a function, i.e., it is delayed even though it only
depends on a type argument. Type application for polymorphic values is
explicit and triggers the effect.

r := 0 is a type error

r 〈Nat〉 := 0 works, but creates a new reference cell

Andres Löh Trinity 31

Subtlety: effects and polymorphism

val r : forall 〈a〉 ⇒ Ref 〈Maybe 〈a〉〉 =
fun 〈a〉 ⇒ ref Nothing

ML has the value restriction to prevent polymorphic values like this.
In Trinity, the above is a function, i.e., it is delayed even though it only
depends on a type argument. Type application for polymorphic values is
explicit and triggers the effect.

r := 0 is a type error

r 〈Nat〉 := 0 works, but creates a new reference cell

Andres Löh Trinity 31

More effectful features

built-in input/output functions

exceptions

Andres Löh Trinity 32

Yet more features

continuations

objects

subtyping for objects and records

modules

experimental: delimited continuations, contracts, run-time typing,
functors, . . .

Some of these features are still somewhat experimental.

Andres Löh Trinity 33

End of the tour – the implementation

The implementation:

abstract machine interpreters are reasonably fast and extremely easy
to implement in Haskell

is still relatively small: 12500 kloc including comments

is very straight-forward (except maybe for the type-checker)

comes with a test suite of currently about 200 tests, some of them
being medium-sized example programs

In spirit, Trinity is a type-checked language, but the implementation is too
liberal at the moment and can infer quite a lot

Andres Löh Trinity 34

Plans

Fix a few remaining design decisions.

Clearly identify a core set of features.

Extract documentation from lecture notes. Completely document the
core set of features.

Implement more convenience features for the interpreter (and a GUI
version?).

Make implementation more systematic. Ideally, prove correctness of
the implementation by using Coq or a similar system.

Experiment with additional language concepts.

Make it easier and more systematic to add more primitive (read:
foreign) functions.

Use it in other courses (Stefan Holdermans is currently using a
Trinity-subset in the “Implementation of Programming Languages”
course at Utrecht as the language that is implemented).

Andres Löh Trinity 35

Conclusions

Every Haskell programmer should write an interpreter for his or her
favourite programming language.

If you like Trinity, you can play with it. Just send me a mail or wait
for the official release (hopefully soon) – it’s GPL.

For Utrecht students: there are definitely experimentation projects,
and possibly master projects available on the topic of Trinity.

Andres Löh Trinity 36

	History
	Design goals
	Tour of Trinity
	Conclusions

