
Deriving Via
IFIP WG 2.1 meeting #77, Brandenburg

Andres Löh, joint work with Ryan Scott and Baldur Blöndal

2018-07-02

Well-Typed
The Haskell Consultants



Can streams be treated as numbers?

data Stream a = a :> Stream a

class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a

Well-Typed



Can streams be treated as numbers?

data Stream a = a :> Stream a

class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a

Well-Typed



Yes

instance Num a => Num (Stream a) where
(x :> xs) + (y :> ys) = x + y :> xs + ys
...
negate (x :> xs) = negate x :> negate xs
...
fromInteger i = fromInteger i :> fromInteger i

Well-Typed



Better

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

instance Functor Stream where
fmap f (x :> xs) = f x :> fmap f xs

instance Applicative Stream where
pure x = x :> pure x
(f :> fs) <*> (x :> xs) = f x :> (fs <*> xs)

Well-Typed



Better

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

instance Functor Stream where
fmap f (x :> xs) = f x :> fmap f xs

instance Applicative Stream where
pure x = x :> pure x
(f :> fs) <*> (x :> xs) = f x :> (fs <*> xs)

Well-Typed



Again

instance Num a => Num (Stream a) where
xs + ys = pure (+) <*> xs <*> ys
xs - ys = pure (-) <*> xs <*> ys
xs * ys = pure (*) <*> xs <*> ys
negate xs = pure negate <*> xs
abs xs = pure abs <*> xs
signum xs = pure signum <*> xs
fromInteger i = pure (fromInteger i)

Well-Typed



Works for any applicative functor

instance Num a => Num (Maybe a) where
mx + my = pure (+) <*> mx <*> my
mx - my = pure (-) <*> mx <*> my
mx * my = pure (*) <*> mx <*> my
negate mx = pure negate <*> mx
abs mx = pure abs <*> mx
signum mx = pure signum <*> mx
fromInteger i = pure (fromInteger i)

Well-Typed



Goal of deriving via

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

data Maybe a = Nothing | Just a
deriving Num via (LiftApplicative Maybe a)

▶ Allow defining and naming instance rules such as
LiftApplicative .

▶ Allow instantiating rules in deriving clauses.

Well-Typed



Goal of deriving via

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

data Maybe a = Nothing | Just a
deriving Num via (LiftApplicative Maybe a)

▶ Allow defining and naming instance rules such as
LiftApplicative .

▶ Allow instantiating rules in deriving clauses.

Well-Typed



Instance rules



An approach that does not work

instance (Num a, Applicative f) => Num (f a) where
x + y = pure (+) <*> x <*> y
x - y = pure (-) <*> x <*> y
x * y = pure (*) <*> x <*> y
negate x = pure negate <*> x
abs x = pure abs <*> x
signum x = pure signum <*> x
fromInteger i = pure (fromInteger i)

▶ Allows defining, but not naming the rule.
▶ Overlaps with too many instances.

Well-Typed



An approach that does not work

instance (Num a, Applicative f) => Num (f a) where
x + y = pure (+) <*> x <*> y
x - y = pure (-) <*> x <*> y
x * y = pure (*) <*> x <*> y
negate x = pure negate <*> x
abs x = pure abs <*> x
signum x = pure signum <*> x
fromInteger i = pure (fromInteger i)

▶ Allows defining, but not naming the rule.
▶ Overlaps with too many instances.

Well-Typed



Use newtypes

newtype LiftApplicative f a = LA (f a)

instance
(Num a, Applicative f)

=> Num (LiftApplicative f a) where
LA x + LA y = LA (pure (+) <*> x <*> y)
LA x - LA y = LA (pure (-) <*> x <*> y)
LA x * LA y = LA (pure (*) <*> x <*> y)
negate (LA x) = LA (pure negate <*> x)
abs (LA x) = LA (pure abs <*> x)
signum (LA x) = LA (pure signum <*> x)
fromInteger i = LA (pure (fromInteger i))

Defines and names the rule.

Well-Typed



Use newtypes

newtype LiftApplicative f a = LA (f a)

instance
(Num a, Applicative f)

=> Num (LiftApplicative f a) where
LA x + LA y = LA (pure (+) <*> x <*> y)
LA x - LA y = LA (pure (-) <*> x <*> y)
LA x * LA y = LA (pure (*) <*> x <*> y)
negate (LA x) = LA (pure negate <*> x)
abs (LA x) = LA (pure abs <*> x)
signum (LA x) = LA (pure signum <*> x)
fromInteger i = LA (pure (fromInteger i))

Defines and names the rule.

Well-Typed



Instantiating the rule

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

data Maybe a = Nothing | Just a
deriving Num via (LiftApplicative Maybe a)

Explicitly instantiates the rule.

Still need Functor and Applicative instances defined
somewhere.

Well-Typed



Instantiating the rule

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

data Maybe a = Nothing | Just a
deriving Num via (LiftApplicative Maybe a)

Explicitly instantiates the rule.

Still need Functor and Applicative instances defined
somewhere.

Well-Typed



How does it work?



Newtypes

A newtype is a datatype with

▶ exactly one constructor
▶ of exactly one argument.

Wrapped and wrapper types are guaranteed to be
representionally equal.

Well-Typed



Newtypes

A newtype is a datatype with

▶ exactly one constructor
▶ of exactly one argument.

Wrapped and wrapper types are guaranteed to be
representionally equal.

Well-Typed



Witnessing representional equality

coerce :: Coercible a b => a -> b

The Coercible constraint is built-in.

“Instances” are provided (only) by the compiler.

Well-Typed



Witnessing representional equality

coerce :: Coercible a b => a -> b

The Coercible constraint is built-in.

“Instances” are provided (only) by the compiler.

Well-Typed



Newtypes and coercions

newtype Amount = MkAmount Rational

Compiler knows:

Coercible Rational Amount
Coercible Amount Rational

Well-Typed



Newtypes and coercions

newtype Amount = MkAmount Rational

Compiler knows:

Coercible Rational Amount
Coercible Amount Rational

Well-Typed



Newtypes and type constructors

Compiler also knows:

Coercible a b => Coercible [a] [b]

Coercible a b => Coercible (IO a) (IO b)

(Coercible a c, Coercible b d)
=> Coercible (a, b) (c, d)

(Coercible a c, Coercible b d)
=> Coercible (a -> b) (c -> d)

Consequence: We can lift coerce through most types.

Well-Typed



Newtypes and type constructors

Compiler also knows:

Coercible a b => Coercible [a] [b]

Coercible a b => Coercible (IO a) (IO b)

(Coercible a c, Coercible b d)
=> Coercible (a, b) (c, d)

(Coercible a c, Coercible b d)
=> Coercible (a -> b) (c -> d)

Consequence: We can lift coerce through most types.

Well-Typed



The situation

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

We have:

instance Num a => Num (LiftApplicative Stream a)

We want:

instance Num a => Num (Stream a)

We know:

Coercible (LiftApplicative Stream a) (Stream a)

Well-Typed



The situation

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

We have:

instance Num a => Num (LiftApplicative Stream a)

We want:

instance Num a => Num (Stream a)

We know:

Coercible (LiftApplicative Stream a) (Stream a)

Well-Typed



The situation

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

We have:

instance Num a => Num (LiftApplicative Stream a)

We want:

instance Num a => Num (Stream a)

We know:

Coercible (LiftApplicative Stream a) (Stream a)

Well-Typed



The situation

data Stream a = a :> Stream a
deriving Num via (LiftApplicative Stream a)

We have:

instance Num a => Num (LiftApplicative Stream a)

We want:

instance Num a => Num (Stream a)

We know:

Coercible (LiftApplicative Stream a) (Stream a)

Well-Typed



Coercing instances

instance Num a => Num (Stream a) where
(+) =
coerce ((+) @(LiftApplicative Stream a))

(-) =
coerce ((-) @(LiftApplicative Stream a))

(*) =
coerce ((*) @(LiftApplicative Stream a))

negate =
coerce (negate @(LiftApplicative Stream a))

abs =
coerce (abs @(LiftApplicative Stream a))

signum =
coerce (signum @(LiftApplicative Stream a))

fromInteger =
coerce (fromInteger @(LiftApplicative Stream a))

Well-Typed



Summary

▶ Library writer is encouraged to write down and name instance
rules.

▶ End user can use existing rules to avoid boilerplate.
▶ Very lightweight addition to GHC. Implemented in GHC 8.6.

Well-Typed



Generalisations and interactions



Generalised newtype deriving

newtype Amount = MkAmount Rational
deriving (Num, Fractional, Eq, Enum, Ord, Show)
via Rational

Well-Typed



Monads are applicative functors

newtype FromMonad m a = FM (m a)

instance Monad m => Functor (FromMonad m) where
fmap f (FM m) = FM (m >>= return . f)

instance Monad m => Applicative (FromMonad m) where
pure a = FM (return a)
FM f <*> FM x =
FM (f >>= \ rf -> x >>= \ rx -> return (rf rx))

Well-Typed



Defining monads becomes almost as easy as pre-AMP

data Maybe a = Nothing | Just a
deriving (Functor, Applicative) via (FromMonad Maybe)

instance Monad Maybe where
return = Just
Just m >>= k = k m
Nothing >>= _ = Nothing

Well-Typed



Ordering implies equality

newtype FromOrd a = FO a

instance Ord a => Eq (FromOrd a) where
FO x == FO y =
case compare x y of
EQ -> True
_ -> False

data TaggedWith a b = TW {tag :: a, item :: b}
deriving Eq via (FromOrd (TaggedWith a b))

instance Ord b => Ord (TaggedWith a b) where
compare x y = compare (item x) (item y)

Well-Typed



Ordering implies equality

newtype FromOrd a = FO a

instance Ord a => Eq (FromOrd a) where
FO x == FO y =
case compare x y of
EQ -> True
_ -> False

data TaggedWith a b = TW {tag :: a, item :: b}
deriving Eq via (FromOrd (TaggedWith a b))

instance Ord b => Ord (TaggedWith a b) where
compare x y = compare (item x) (item y)

Well-Typed



List of successes parsers

newtype Parser a = P (String -> [(a, String)])

newtype StateT s m a =
StateT {runStateT :: s -> m (a, s)}

instance Functor m => Functor (StateT s m)
instance (Functor m, Monad m) => Applicative (StateT s m)
instance Monad m => Monad (StateT s m)

Well-Typed



List of successes parsers

newtype Parser a = P (String -> [(a, String)])
deriving
(Functor, Applicative, Monad, MonadState String)
via (StateT String [])

newtype StateT s m a =
StateT {runStateT :: s -> m (a, s)}

instance Functor m => Functor (StateT s m)
instance (Functor m, Monad m) => Applicative (StateT s m)
instance Monad m => Monad (StateT s m)

Well-Typed



List of successes parsers

newtype Parser a = P (String -> [(a, String)])
deriving
(Functor, Applicative, Monad, MonadState String)
via (StateT String [])

newtype StateT s m a =
StateT {runStateT :: s -> m (a, s)}

instance Functor m => Functor (StateT s m)
instance (Functor m, Monad m) => Applicative (StateT s m)
instance Monad m => Monad (StateT s m)

Well-Typed



Custom enumeration types



Weekdays

data Weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday
deriving (GHC.Generic, SOP.Generic)

Well-Typed



Custom enum class

class IsEnumType a => CustomEnum a where
names :: NP (K String) (Code a)

instance CustomEnum Weekday where
names =

K "Mo"
:* K "Di"
:* K "Mi"
:* K "Do"
:* K "Fr"
:* K "Sa"
:* K "So"
:* Nil

Well-Typed



Custom enum class

class IsEnumType a => CustomEnum a where
names :: NP (K String) (Code a)

instance CustomEnum Weekday where
names =

K "Mo"
:* K "Di"
:* K "Mi"
:* K "Do"
:* K "Fr"
:* K "Sa"
:* K "So"
:* Nil

Well-Typed



Functionality of custom enum types

newtype FromCustomEnum a = FCE a

instance CustomEnum a => Read (FromCustomEnum a)
instance CustomEnum a => Show (FromCustomEnum a)
instance CustomEnum a => Enum (FromCustomEnum a)

Well-Typed



Now

data Weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday
deriving (GHC.Generic, SOP.Generic)
deriving (Read, Show, Enum) via (FromCustomEnum Weekday)

Well-Typed



Example: getters



Getting one type from another

newtype Getting a b = G b

class HasGetting a b where
getting :: b -> a

instance (HasGetting a b, Eq a) => Eq (Getting a b) where
G x == G y = getting @a x == getting @a y

instance (HasGetting a b, Ord a) => Ord (Getting a b) where
compare (G x) (G y) =
compare (getting @a x) (getting @a y)

instance
(HasGetting a b, Show a) => Show (Getting a b) where
showsPrec prec (G x) =
showsPrec prec (getting @a x)

Well-Typed



Getting one type from another

newtype Getting a b = G b

class HasGetting a b where
getting :: b -> a

instance (HasGetting a b, Eq a) => Eq (Getting a b) where
G x == G y = getting @a x == getting @a y

instance (HasGetting a b, Ord a) => Ord (Getting a b) where
compare (G x) (G y) =
compare (getting @a x) (getting @a y)

instance
(HasGetting a b, Show a) => Show (Getting a b) where
showsPrec prec (G x) =
showsPrec prec (getting @a x)

Well-Typed



Example

data TaggedWith a b = TW {tag :: a, item :: b}
deriving (Eq, Ord) via (Getting b (TaggedWith a b))

instance HasGetting b (TaggedWith a b) where
getting = item

Well-Typed



Examples in the paper

▶ QuickCheck modifiers
▶ representable functors
▶ default signatures
▶ same / similar generic representation

Well-Typed



Conclusions

▶ Simple extension
▶ Generalises many features
▶ Compositional and configurable
▶ Encourages code reuse and more high-level programming

Well-Typed


