
Deriving Via
Haskell eXchange 2018

Andres Löh, Baldur Blöndal, Ryan Scott
2018-10-12

Well-Typed
The Haskell Consultants

data Status = Green | Yellow | Red

Well-Typed

data Status = Green | Yellow | Red
deriving Eq

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON) -- is this really what we want?

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)

What about Semigroup (and Monoid)?

Several reasonable options:
▶ always take first,
▶ always take last,
▶ always take “worst”,
▶ . . .

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)

What about Semigroup (and Monoid)?

Several reasonable options:
▶ always take first,
▶ always take last,
▶ always take “worst”,
▶ . . .

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)
deriving Semigroup
via First Status -- always take first

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)
deriving Semigroup
via Last Status -- always take last

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)
deriving Semigroup
via Max Status -- always take “worst”

Rule Max a :

Ord a => Semigroup a

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)
deriving Semigroup
via Max Status -- always take “worst”

Rule Max a :

Ord a => Semigroup a

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)
deriving (Semigroup, Monoid)
via Max Status -- always take “worst”, default to “best”

Rule Max a :

(Ord a, Bounded a) => Monoid a

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON)
deriving (Semigroup, Monoid)
via Max Status -- always take “worst”, default to “best”

Rule Max a :

(Ord a, Bounded a) => Monoid a

Well-Typed

Deriving Via

▶ Give names to instance rules.

Use newtype s and instance s on them for named rules.

▶ Apply named instance rules in via clauses to derive instances.

Compiler applies (safe) coercions between representationally
equal types to get the instances.

Well-Typed

Deriving Via

▶ Give names to instance rules.

Use newtype s and instance s on them for named rules.

▶ Apply named instance rules in via clauses to derive instances.

Compiler applies (safe) coercions between representationally
equal types to get the instances.

Well-Typed

Deriving Via

▶ Give names to instance rules.

Use newtype s and instance s on them for named rules.

▶ Apply named instance rules in via clauses to derive instances.

Compiler applies (safe) coercions between representationally
equal types to get the instances.

Well-Typed

Deriving Via

▶ Give names to instance rules.

Use newtype s and instance s on them for named rules.

▶ Apply named instance rules in via clauses to derive instances.

Compiler applies (safe) coercions between representationally
equal types to get the instances.

Well-Typed

Deriving Via

▶ Give names to instance rules.

Use newtype s and instance s on them for named rules.

▶ Apply named instance rules in via clauses to derive instances.

Compiler applies (safe) coercions between representationally
equal types to get the instances.

Well-Typed

Rules Max a :

Ord a => Semigroup a
(Ord a, Bounded a) => Monoid a

newtype Max a = Max {getMax :: a}
-- already in Data.Semigroup

instance Ord a => Semigroup (Max a) where
Max a1 <> Max a2 = Max (a1 `max` a2)

instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = Max minBound

Well-Typed

Rules Max a :

Ord a => Semigroup a
(Ord a, Bounded a) => Monoid a

newtype Max a = Max {getMax :: a}
-- already in Data.Semigroup

instance Ord a => Semigroup (Max a) where
Max a1 <> Max a2 = Max (a1 `max` a2)

instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = Max minBound

Well-Typed

Rules Max a :

Ord a => Semigroup a
(Ord a, Bounded a) => Monoid a

newtype Max a = Max {getMax :: a}
-- already in Data.Semigroup

instance Ord a => Semigroup (Max a) where
Max a1 <> Max a2 = Max (a1 `max` a2)

instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = Max minBound

Well-Typed

Rules Max a :

Ord a => Semigroup a
(Ord a, Bounded a) => Monoid a

newtype Max a = Max {getMax :: a}
-- already in Data.Semigroup

instance Ord a => Semigroup (Max a) where
Max a1 <> Max a2 = Max (a1 `max` a2)

instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = Max minBound

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord)
deriving Semigroup
via Max Status

Derived instance:
instance Semigroup Status where
(<>) =
coerce
@(Max Status -> Max Status -> Max Status)
@(Status -> Status -> Status)
(<>)

coerce :: Coercible a b => a -> b -- from Data.Coerce

Well-Typed

data Status = Green | Yellow | Red
deriving (Eq, Ord)
deriving Semigroup
via Max Status

Derived instance:
instance Semigroup Status where
(<>) =
coerce
@(Max Status -> Max Status -> Max Status)
@(Status -> Status -> Status)
(<>)

coerce :: Coercible a b => a -> b -- from Data.Coerce

Well-Typed

What has changed?

▶ Scrap your boilerplate

In particular if:
• classes have many methods,
• you can derive several instances via one rule.

▶ Write down instance rules

(This is already happening.)

▶ Justify your instances

Well-Typed

What has changed?

▶ Scrap your boilerplate

In particular if:
• classes have many methods,
• you can derive several instances via one rule.

▶ Write down instance rules

(This is already happening.)

▶ Justify your instances

Well-Typed

What has changed?

▶ Scrap your boilerplate

In particular if:
• classes have many methods,
• you can derive several instances via one rule.

▶ Write down instance rules

(This is already happening.)

▶ Justify your instances

Well-Typed

What has changed?

▶ Scrap your boilerplate

In particular if:
• classes have many methods,
• you can derive several instances via one rule.

▶ Write down instance rules

(This is already happening.)

▶ Justify your instances

Well-Typed

Examples

Generalised newtype deriving

newtype Amount = MkAmount Rational
deriving (Num, Fractional, Eq, Enum, Ord, Show)
via Rational

Well-Typed

Monads are applicative functors

Rules FromMonad m :

Monad m => Functor m
Monad m => Applicative m

newtype FromMonad m a = FM (m a)

instance Monad m => Functor (FromMonad m) where
fmap f (FM m) = FM (m >>= return . f)

instance Monad m => Applicative (FromMonad m) where
pure a = FM (return a)
FM f <*> FM x =
FM (f >>= \ rf -> x >>= \ rx -> return (rf rx))

Well-Typed

Monads are applicative functors

Rules FromMonad m :

Monad m => Functor m
Monad m => Applicative m

newtype FromMonad m a = FM (m a)

instance Monad m => Functor (FromMonad m) where
fmap f (FM m) = FM (m >>= return . f)

instance Monad m => Applicative (FromMonad m) where
pure a = FM (return a)
FM f <*> FM x =
FM (f >>= \ rf -> x >>= \ rx -> return (rf rx))

Well-Typed

Monads are applicative functors

Rules FromMonad m :

Monad m => Functor m
Monad m => Applicative m

newtype FromMonad m a = FM (m a)

instance Monad m => Functor (FromMonad m) where
fmap f (FM m) = FM (m >>= return . f)

instance Monad m => Applicative (FromMonad m) where
pure a = FM (return a)
FM f <*> FM x =
FM (f >>= \ rf -> x >>= \ rx -> return (rf rx))

Well-Typed

Monads are applicative functors

data Maybe a = Nothing | Just a
deriving (Functor, Applicative)
via (FromMonad Maybe)

instance Monad Maybe where
return = Just
Just m >>= k = k m
Nothing >>= _ = Nothing

Well-Typed

Getters

data Event =
MkEvent

{ status :: Status
, handler :: IO ()
}

deriving Generic
deriving Eq
via Field "status" Event

Well-Typed

Getters

data Event =
MkEvent

{ status :: Status
, handler :: IO ()
}

deriving Generic
deriving Eq
via Field "status" Event

Well-Typed

Getters

data Event =
MkEvent

{ status :: Status
, handler :: IO ()
}

deriving Generic
deriving Eq
via Field "status" Event

Well-Typed

Getters

newtype Field (n :: Symbol) (a :: Type) =
Field {unField :: a}

instance (HasField' n a b, Eq b) => Eq (Field n a) where
(==) = (==) `on` getField @n . unField

Well-Typed

Custom enumeration types

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving Generic
deriving (FromJSON, ToJSON) -- is this really what we want?

Well-Typed

Custom enumeration types

data Status = Green | Yellow | Red
deriving (Eq, Ord, Show, Enum, Bounded)
deriving (Generic)
deriving (FromJSON, ToJSON)
via CustomEnum ′["green", "yellow", "yed"] Status

Well-Typed

Custom enumeration types

newtype CustomEnum (ls :: [Symbol]) (a :: Type) =
MkCustomEnum a

instance ModifiedGeneric ls a => FromJSON a
instance ModifiedGeneric ls a => ToJSON a

Well-Typed

Conclusions

▶ Available now as -XDerivingVia in GHC 8.6.1.

▶ Lightweight feature, reusing existing language concepts.

▶ Generalises generalised newtype deriving (and, to some extent,
default signatures).

▶ The real fun starts once you consider that instance rules can have
parameters and be conposed.

Well-Typed

