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Excerpt from the Haskell hierarchical libraries I

Data.Array standard immutable arrays
Data.Array.* mutable and unboxed arrays
Data.Bits class for bit operations
Data.Bool standard bool type and logical operations
Data.Char standard characters and character classes
Data.Complex standard complex numbers
Data.Dynamic dynamic types
Data.Either standard binary sum type
Data.FiniteMap deprecated, see Data.Map
Data.FunctorM monadic functor class
Data.Generics “scrap your boilerplate” combinators
Data.Graph easy-to-use graph library
Data.Graph.Inductive “functional graph library”



Excerpt from the Haskell hierarchical libraries II

Data.HashTable ephemeral hash table implementation (IO)
Data.Int standard integers
Data.IntMap efficient finite maps with integers keys
Data.IntSet efficient sets of integers
Data.IORef mutable variables (IO)
Data.Ix class of array index types
Data.Lists standard lists
Data.Map “generic” finite maps
Data.Maybe standard option/exception type
Data.Monoid monoid class
Data.PackedString packed (space-efficient) strings



Excerpt from the Haskell hierarchical libraries III

Data.Queue single-ended queues
Data.Ratio standard rational numbers
Data.Set “generic” sets
Data.STRef mutable variables (ST)
Data.Tree (limited) tree operations
Data.Tuple standard tuples
Data.Typeable class for dynamic type information
Data.Unique unique identities (IO)
Data.Version very simplistic version numbers
Data.Word words of different bit-length
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Using data types

I High-level recursion operators.
I Special syntax.
I Pattern matching.



How to use pattern matching on deques?

Deque implementation:

data Deque a = D ! Int [a ] ! Int [a ]

Other possible implementation:

data Deque a = D [a ] [a ] [a ]

Pattern matching on the implementation type is bad, because
I it breaks the abstraction
I the implementation might respect invariants that are not

obvious from the representation type



Using functions to destruct deques is tedious

Example: remove the first and the last element of a deque,
return their sum and the resulting deque.

removefl :: Deque Int→ (Int, Deque Int)
removefl q = (head q + last q, init (tail q))

Imagine we could write

removefl :: Deque Int→ (Int, Deque Int)
removefl (f / q . l) = (f + l, q)

instead.
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Datatypes and functions

data Front a = Nil | a / Deque a
data Back a = Lin | Deque a . a

front :: Deque a→ Front a
front q = if isEmpty q then Nil

else head q / tail q
back :: Deque a→ Back a
back q = if isEmpty q then Lin

else init q . last q
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But then?

removefl :: Deque Int→ (Int, Deque Int)
removefl q = case back q of

(q′ . l) → case front q′ of
(f / q′′) → (f + l, q′′)

This gets even worse if we want removefl to return (0, empty) on
queues with less than two elements.
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Pattern guards

removefl :: Deque Int→ (Int, Deque Int)
removefl q
| q′ . l← back q, f / q′′ ← front q′ = (f + l, q′′)

Pattern guards
I are implemented in GHC;
I allow “list comprehension”-syntax in guards
I are a conservative extension of normal guards
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removefl :: Deque Int→ (Int, Deque Int)
removefl q
| q′ . l← back q, f / q′′ ← front q = (f + l, q′′)
| otherwise = (0, q)
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I are implemented in GHC;
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I are a conservative extension of normal guards



Pattern guards

removefl :: Deque Int→ (Int, Deque Int)
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Views

view Front a of Deque a = Nil | a . Deque a
where

front q = if isEmpty q then Nil
else head q . tail q

view Back a of Deque a = Lin | Deque a / a
where

back q = if isEmpty q then Lin
else init q / last q

removefl :: Deque Int→ (Int, Deque Int)
removefl (f . q / l) = (f + l, q)
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Uni-directional views

view Front a of Deque a = Nil | a . Deque a
where

front q = if isEmpty q then Nil
else head q . tail q

I View constructors such as Nil and (.) must not appear on
the right hand side of functions, except in the view
transformation. Why?

I The view type must not be recursive. Why?
I However, the view transformation may use the view

recursively . . .
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Recursive view definitions

view Ord a⇒ Minimum a of [a ] = Empty | Min a [a ]
where

min [ ] = Empty
min (x : Empty) = Min x [ ]
min (x : Min y ys) = if x 6 y then Min x (y : ys)

else Min y (x : xs)
sort :: Ord a⇒ [a ] → [a ]
sort Empty = [ ]
sort (Min x xs) = x : sort xs



Views on classes

class ListLike l where
null :: l a→ Bool
nil :: l a
cons :: a→ l a→ l a
head :: l a→ a
tail :: l a→ l a

view (ListLike l) ⇒ List l a of l a = Nil | Cons a l
where

list xs = if null xs then Nil
else Cons (head xs) (tail xs)

Can views be instances of classes?



Wadler’s Views

view Front a of Deque a = Nil | a . Deque a
where

in q = if isEmpty q then Nil
else head q . tail q

out Nil = empty
out (a . q) = cons a q

view Back a of Deque a = Lin | Deque a / a
where

in q = if isEmpty q then Lin
else init q / last q

out Lin = empty
out (q / a) = snoc a q



Views in Haskell?

I Views are not implemented in any Haskell
implementation.

I If they apply in both directions, isomorphism has to be
checked manually.

I It is difficult to estimate the efficiency of pattern matching
in the presence of views.

I It is said that pattern guards are enough.
I Nevertheless, I think that views would make a useful

addition to Haskell.
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Binary search trees

data BinTree a = Tip | Node (BinTree a) a (BinTree a)

Binary search tree (BST) property: Invariant for Node l x r:

all (6 x) (toList l) ∧ all (x 6) (toList r)



Binary search trees

data BinTree a = Tip | Node (BinTree a) a (BinTree a)

toList :: BinTree a→ [a ]
toList Tip = [ ]
toList Node l x r = toList l ++ [x ] ++ toList r

Binary search tree (BST) property: Invariant for Node l x r:

all (6 x) (toList l) ∧ all (x 6) (toList r)
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Searching an element in a BST

elem :: Ord a⇒ a→ BinTree a→ Bool
elem x Tip = False
elem x (Node l y r)
| x = = y = True
| x < y = elem x l
| x > y = elem x r



Inserting an element in a BST

insert :: Ord a⇒ a→ BinTree a→ BinTree a
insert x Tip = Node Tip x Tip
insert x (Node l y r)
| x 6 y = Node (insert x l) y r
| x > y = Node l y (insert x r)

Observations:
I Biased insertion.
I It would be easy to disallow duplicates.
I Can lead to unbalanced trees.
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Sorting using a BST

sort :: [a ] → [a ]
sort = toList · foldr insert Tip

Performance?

Quadratic in the worst-case, unless BST is balanced
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Balancing schemes

There are multiple balancing schemes known:
I AVL trees
I Red-black trees
I . . .

It turns out to be more efficient to balance relatively rarely,
because when used with random elements, sufficient balancing

is often achieved on its own.
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Data.Map and Data.Set

I From Daan Leijen’s DData library.
I Since ghc-6.4 the standard finite map and set types.
I Implemented as balanced BSTs.
I Based on Efficient sets: a balancing act by Stephen Adams,

JFP 3(4), pages 553–562, October 1993.



Rotations

Balancing is based on rotations (drawing).

singleL, singleR :: BinTree a→ BinTree a
singleL (Node l x (Node m y r)) = Node (Node l x m) y r
singleR (Node (Node l x m) y r) = Node l x (Node m y r)

doubleL, doubleR :: BinTree a→ BinTree a
doubleL (Node l x (Node (Node m y n) z r))

= Node (Node l x m) y (Node n z r)
doubleR (Node (Node l x (Node m y n)) z r)

= Node (Node l x m) y (Node n z r)
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Smart constructor

A smart constructor is a function that takes the role of a
constructor, but performs additional operations such as to

establish invariants.

Recall makeQ.

Now node :: Ord a⇒ BinTree a→ a→ BinTree a→ BinTree a.
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Keeping the tree balanced

To be able to check the balance of a tree efficiently, we change
the representation:

data BinTree a = Tip | Node ! Int (BinTree a) a (BinTree)

New invariant for Node s l x r:

s = = length (toList l) + 1 + length (toList r)

size :: BinTree a→ Int
size Tip = 0
size (Node s ) = s
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Keeping the tree balanced

Smart constructor, assumes that the tree was originally
balanced at that only one of the two trees has been changed by
one element.

node :: Ord a⇒ BinTree a→ a→ BinTree a→ BinTree a
node l x r
| sl + sr 6 1 = Node s l x r
| sr > δ∗sl = rotateL l x r
| sl > δ∗sr = rotateR l x r
| otherwise = Node s l x r

where sl = size l
sr = size r
s = size l + 1 + size r

The constant δ can be chosen within certain parameters and is 5
in Data.Map.



Insertion and deletion
During insertion and deletion, the smart constructor is used to
maintain the balance.

insert :: Ord a⇒ a→ BinTree a→ BinTree a
insert x Tip = Node Tip x Tip
insert x (Node s l y r)
| x < y = node (insert x l) y r
| x > y = node l y (insert x r)
| x = = y = Node s l x r

delete :: Ord k⇒ a→ BinTree a→ BinTree a
delete x Tip = Tip
delete x (Node s l y r)
| x < y = node (delete x l) y r
| x > y = node l y (delete x r)
| x = = y = glue l r
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Rotating once or twice

rotateL l x r@(Node lr rr)
| α∗size lr < size rr = singleL l x r
| otherwise = doubleL l x r

rotateR l@(Node ll rl) x r
| α∗size rl < size ll = singleR l x r
| otherwise = doubleR l x r

Again, α is a constant that can be chosen, and is 0.5 in
Data.Map.
The functions singleL, doubleL, singleR, doubleR need to be
adapted to the correct type, but are otherwise the same as
mentioned before.



Glueing two balanced trees together

glue :: BinTree a→ BinTree a→ BinTree a
glue Tip r = r
glue l Tip = l
glue l r
| size l > size r = let (x, l′) = deleteFindMax l in node l′ x r
| otherwise = let (x, r′) = deleteFindMin r in node l x r′

deleteFindMax :: BinTree a→ (a, BinTree a)
deleteFindMax (Node l x Tip) = (x, l)
deleteFindMax (Node l x r) =

let (y, r′) = deleteFindMax r in (y, node l x r′)
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Sets

I The operations discussed correspond almost directly to the
implementation of sets in Data.Set.

I All operations (lookup, insertion, deletion) are in O(log n).
I BSTs can be used persistently. When modified, a part of the

tree must be copied.
I The Data.Set module supports more operations: update

(logarithmic), union (linear), difference (linear),
intersection (linear).

I What about a map on sets? It’s O(n log n) in general, and
linear only for monotonic functions.
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Finite maps

The step from sets to finite maps is very small:
We use set elements of the form (key, value), where the order is

determined only by the keys.

In practice, we use a specialized datatype

data Map k a = Tip | Node ! Int (Map k a) k a (Map k a)

and adapt all the operations.
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. . . for example, if we use strings as keys.

Use a trie (aka digital search tree).
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Tries

Trie representation for keys of type [k ]:

data Trie k a = Node (Maybe a) (Map k (Trie k a))

I Can be generalized to other structures of keys than lists.
I Can be implemented as a type-indexed typs.
I Are currently not available as a standard GHC library.
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Other data tructures

I Heaps/Priority queues.
I Hybrid structures: priority search queues, finger trees.
I Functional graphs.



Papers to read

I Okasaki
I Hinze



Practical advice

Be bold enough to use a non-list data structure once in a while.

At the very least, use finite maps when random-access is
desired, and avoid arrays when multiple updates occur.



Observations

I Functional languages are suitable to express complex data
structures clearly.

I Persistence is not always expensive.
I Laziness can sometimes be helpful in the context of

persistence.
I There are still few, but nevertheless usable libraries for

data structures available in Haskell.
I Views are useful.



Haskell as a language for data structures

Clear advantages, but also problems:
I lazy evaluation
I not a real module system
I no views
I at least multi-parameter type classes with fundeps needed
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