
Data Structures I

Advanced Functional Programming

Andres Löh (andres@cs.uu.nl)

Universiteit Utrecht

19 May 2005

Overview

Introduction (Lists)

Arrays

Unboxed types

Queues and deques

Summary and next lecture

Overview

Introduction (Lists)

Arrays

Unboxed types

Queues and deques

Summary and next lecture

Question

What is the most frequently used data structure in Haskell?

Clearly, lists . . .

Question

What is the most frequently used data structure in Haskell?

Clearly, lists . . .

What are lists good for?

head :: [a] → a
tail :: [a] → [a]
(:) :: a → [a] → [a]

I These are efficient operations on lists.
I These are the stack operations.

What are lists good for?

head :: [a] → a
tail :: [a] → [a]
(:) :: a → [a] → [a]

I These are efficient operations on lists.
I These are the stack operations.

What are lists good for?

head :: [a] → a -- O(1)
tail :: [a] → [a] -- O(1)
(:) :: a → [a] → [a] -- O(1)

I These are efficient operations on lists.
I These are the stack operations.

What are lists good for?

top :: [a] → a -- O(1)
pop :: [a] → [a] -- O(1)
push :: a → [a] → [a] -- O(1)

I These are efficient operations on lists.
I These are the stack operations.

Haskell stacks are persistent

A data structure is called persistent if after an operation both
the original and the resutling version of the data structure are

available.

If not persistent, a data structure is called ephemeral.

I Functional data structures are naturally persistent.
I Imperative data structures are usually ephemeral.
I Persistent data structures are often, but not always, less

efficient than ephemeral data structures.

Haskell stacks are persistent

A data structure is called persistent if after an operation both
the original and the resutling version of the data structure are

available.

If not persistent, a data structure is called ephemeral.

I Functional data structures are naturally persistent.
I Imperative data structures are usually ephemeral.
I Persistent data structures are often, but not always, less

efficient than ephemeral data structures.

Haskell stacks are persistent

A data structure is called persistent if after an operation both
the original and the resutling version of the data structure are

available.

If not persistent, a data structure is called ephemeral.

I Functional data structures are naturally persistent.
I Imperative data structures are usually ephemeral.
I Persistent data structures are often, but not always, less

efficient than ephemeral data structures.

Other operations on lists

snoc :: [a] → a → [a] -- O (n)
snoc = λxs x → xs ++ [x]
(++) :: [a] → [a] → [a] -- O (n)
reverse :: [a] → [a] -- O (n), naively: O (n2)
union :: Eq a ⇒ [a] → [a] → [a] -- O (mn)
elem :: Eq a ⇒ a → [a] → Bool -- O (n)

Although not efficient for these purposes, Haskell lists are
frequently used as

I arrays
I queues, deques, catenable queues
I sets
I lookup tables, association lists, finite maps
I . . .

Why?

Other operations on lists

snoc :: [a] → a → [a] -- O (n)
snoc = λxs x → xs ++ [x]
(++) :: [a] → [a] → [a] -- O (n)
reverse :: [a] → [a] -- O (n), naively: O (n2)
union :: Eq a ⇒ [a] → [a] → [a] -- O (mn)
elem :: Eq a ⇒ a → [a] → Bool -- O (n)

Although not efficient for these purposes, Haskell lists are
frequently used as

I arrays
I queues, deques, catenable queues
I sets
I lookup tables, association lists, finite maps
I . . .

Why?

Other operations on lists

snoc :: [a] → a → [a] -- O (n)
snoc = λxs x → xs ++ [x]
(++) :: [a] → [a] → [a] -- O (n)
reverse :: [a] → [a] -- O (n), naively: O (n2)
union :: Eq a ⇒ [a] → [a] → [a] -- O (mn)
elem :: Eq a ⇒ a → [a] → Bool -- O (n)

Although not efficient for these purposes, Haskell lists are
frequently used as

I arrays
I queues, deques, catenable queues
I sets
I lookup tables, association lists, finite maps
I . . .

Why?

Lists are everywhere, because . . .

I There is a convenient built-in notation for lists.
I There are even list comprehensions in Haskell.
I Lots of library functions on lists.
I Pattern matching!
I Haskell strings are lists.
I Other data structures not widely known.
I Arrays are often worse.
I Not enough standard libraries for data structures.

We are going to change this . . .

Unfortunately, the remaining reasons are valid.

Lists are everywhere, because . . .

I There is a convenient built-in notation for lists.
I There are even list comprehensions in Haskell.
I Lots of library functions on lists.
I Pattern matching!
I Haskell strings are lists.
I Other data structures not widely known.
I Arrays are often worse.
I Not enough standard libraries for data structures.

We are going to change this . . .

Unfortunately, the remaining reasons are valid.

Lists are everywhere, because . . .

I There is a convenient built-in notation for lists.
I There are even list comprehensions in Haskell.
I Lots of library functions on lists.
I Pattern matching!
I Haskell strings are lists.
I Other data structures not widely known.
I Arrays are often worse.
I Not enough standard libraries for data structures.

We are going to change this . . .

Unfortunately, the remaining reasons are valid.

Lists are everywhere, because . . .

I There is a convenient built-in notation for lists.
I There are even list comprehensions in Haskell.
I Lots of library functions on lists.
I Pattern matching!
I Haskell strings are lists.
I Other data structures not widely known.
I Arrays are often worse.
I Not enough standard libraries for data structures.

We are going to change this . . .

Unfortunately, the remaining reasons are valid.

Therefore, a bit of advice

Use accumulating arguments.

reverse :: [a] → [a]
reverse = reverse′ []
reverse′ :: [a] → [a] → [a]
reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

The concatenation trick.

Compare:

((((xs1++) · (xs2++)) · (xs3++)) · (xs4++)) ""
(((xs1 ++ xs2) ++ xs3) ++ xs4)

Therefore, a bit of advice

Use accumulating arguments.

reverse :: [a] → [a]
reverse = reverse′ []
reverse′ :: [a] → [a] → [a]
reverse′ acc [] = acc
reverse′ acc (x : xs) = reverse′ (x : acc) xs

The concatenation trick.

Compare:

((((xs1++) · (xs2++)) · (xs3++)) · (xs4++)) ""
(((xs1 ++ xs2) ++ xs3) ++ xs4)

Overview

Introduction (Lists)

Arrays

Unboxed types

Queues and deques

Summary and next lecture

About arrays

Imperative arrays feature
I constant-time lookup
I constant-time update

Update is usually at least as important as lookup.

Functional arrays do
I lookup in O(1); yay!
I update in O(n)! Why? Persistence!

Array update is even worse than list update.
I To update the nth element of a list, n − 1 elements are

copied.
I To update any element of an array, the whole array is

copied.

About arrays

Imperative arrays feature
I constant-time lookup
I constant-time update

Update is usually at least as important as lookup.

Functional arrays do
I lookup in O(1); yay!
I update in O(n)! Why? Persistence!

Array update is even worse than list update.
I To update the nth element of a list, n − 1 elements are

copied.
I To update any element of an array, the whole array is

copied.

About arrays

Imperative arrays feature
I constant-time lookup
I constant-time update

Update is usually at least as important as lookup.

Functional arrays do
I lookup in O(1); yay!
I update in O(n)! Why? Persistence!

Array update is even worse than list update.
I To update the nth element of a list, n − 1 elements are

copied.
I To update any element of an array, the whole array is

copied.

Space efficiency vs. space leaks

Arrays can be stored in a compact way.
Lists require lots of pointers.

If arrays are updated frequently and used persistently,
space leaks will occur!

Space efficiency vs. space leaks

Arrays can be stored in a compact way.
Lists require lots of pointers.

If arrays are updated frequently and used persistently,
space leaks will occur!

Mutable arrays

I Are like imperative arrays.
I Defined in Data.Array.MArray and Data.Array.IO.
I All operations in a state monad (possibly IO monad).
I Often awkward to use in a functional setting.

Overview

Introduction (Lists)

Arrays

Unboxed types

Queues and deques

Summary and next lecture

Boxed vs. unboxed types

Haskell data structures are boxed.
I Each value is behind an additional indirection.
I This allows polymorphic datastructures (because the size

of a pointer is always the same).
I This allows laziness, because the pointer can be to a

computation as well as to evaluated data.

GHC offers unboxed datatypes, too. Naturally, they
I are slightly more efficient (in both space and time),
I are strict,
I cannot be used in polymorphic data structures.

Boxed vs. unboxed types

Haskell data structures are boxed.
I Each value is behind an additional indirection.
I This allows polymorphic datastructures (because the size

of a pointer is always the same).
I This allows laziness, because the pointer can be to a

computation as well as to evaluated data.

GHC offers unboxed datatypes, too. Naturally, they
I are slightly more efficient (in both space and time),
I are strict,
I cannot be used in polymorphic data structures.

Unboxed types

I Defined in GHC.Base.
I For example, Int#, Char#, Double#.
I Have kind #, not ∗.
I Use specialized operations such as

(+#) :: Int# → Int# → Int#

I Cannot be used in polymorphic functions or datatypes.
I Are used by GHC internally to define the usual datatypes:

data Int = I# Int#

Packed strings

I Defined in Data.PackedString.
I Implemented as immutable, unboxed arrays.
I Can be more space-efficient than standard strings.
I Manipulating packed strings can be expensive.

Overview

Introduction (Lists)

Arrays

Unboxed types

Queues and deques

Summary and next lecture

Queues

I Stacks are LIFO (last-in-first-out).
I Queues are FIFO (first-in-first-out).
I A list is not very suitable to represent a queue, because

efficient access to both ends is desired.

The standard trick is:

data Queue a = Q [a] [a]

The first list is the front, the second the back of the queue, in
reversed order.

Queues

I Stacks are LIFO (last-in-first-out).
I Queues are FIFO (first-in-first-out).
I A list is not very suitable to represent a queue, because

efficient access to both ends is desired.

The standard trick is:

data Queue a = Q [a] [a]

The first list is the front, the second the back of the queue, in
reversed order.

Queues

I Stacks are LIFO (last-in-first-out).
I Queues are FIFO (first-in-first-out).
I A list is not very suitable to represent a queue, because

efficient access to both ends is desired.

The standard trick is:

data Queue a = Q [a] [a]

The first list is the front, the second the back of the queue, in
reversed order.

Queue operations

This is what we want for a queue:

empty :: Queue a -- produce an empty queue
snoc :: a → Queue a → Queue a -- insert at the back
head :: Queue a → a -- get first element
tail :: Queue a → Queue a -- remove first element

toList :: Queue a → [a] -- queue to list
fromList :: [a] → Queue a -- list to queue

Queue operations

This is what we want for a queue:

empty :: Queue a -- produce an empty queue
snoc :: a → Queue a → Queue a -- insert at the back
head :: Queue a → a -- get first element
tail :: Queue a → Queue a -- remove first element

toList :: Queue a → [a] -- queue to list
fromList :: [a] → Queue a -- list to queue

Implementing queue operations

empty :: Queue a
empty = Q [] []

snoc :: a → Queue a → Queue a
snoc x (Q fs bs) = Q fs (x : bs)

Implementing queue operations

empty :: Queue a
empty = Q [] []

snoc :: a → Queue a → Queue a
snoc x (Q fs bs) = Q fs (x : bs)

Invocations of reverse

head :: Queue a → a
head (Q (f : fs) bs) = f
head (Q [] bs) = head (reverse bs)

tail :: Queue a → Queue a
tail (Q (f : fs) bs) = Q fs bs
tail (Q [] bs) = Q (tail (reverse bs)) []

Persistence spoils the fun here; without persistence, all
operations would be in O(1) amortized time.

Invocations of reverse

head :: Queue a → a
head (Q (f : fs) bs) = f
head (Q [] bs) = head (reverse bs)

tail :: Queue a → Queue a
tail (Q (f : fs) bs) = Q fs bs
tail (Q [] bs) = Q (tail (reverse bs)) []

Persistence spoils the fun here; without persistence, all
operations would be in O(1) amortized time.

Invocations of reverse

head :: Queue a → a
head (Q (f : fs) bs) = f
head (Q [] bs) = head (reverse bs)

tail :: Queue a → Queue a
tail (Q (f : fs) bs) = Q fs bs
tail (Q [] bs) = Q (tail (reverse bs)) []

Persistence spoils the fun here; without persistence, all
operations would be in O(1) amortized time.

Amortized analysis

Amortized complexity can be better than worst-case
complexity if the worst-case cannot occur that often in practice.

In an amortized analysis, we look at the cost of multiple
operations rather than single operations.

Idea

I Distribute the work that reverse causes over multiple
operations in such a way that the amortized cost of each
operation is constant.

I Use laziness (and memoization) to ensure that expensive
operations are not performed too early or too often.

Memoization

A suspended expression in a lazy language is evaluated only
once. The suspension is then updated with the result.

Whenever the same expression is needed again, the result can
be used immediately.

This is called memoization.

Memoization

A suspended expression in a lazy language is evaluated only
once. The suspension is then updated with the result.

Whenever the same expression is needed again, the result can
be used immediately.

This is called memoization.

Efficient queues

Recall the queue representation:

data Queue a = Q [a] [a]

As we will see, the work of reversing the list can be distributed
well by chosing the following invariant for Q fs bs:

length fs > length bs

In particular, length fs = = 0 if and only if the queue is empty.

We need the lengths of both lists available in constant time.

Efficient queues

Recall the queue representation:

data Queue a = Q [a] [a]

As we will see, the work of reversing the list can be distributed
well by chosing the following invariant for Q fs bs:

length fs > length bs

In particular, length fs = = 0 if and only if the queue is empty.

We need the lengths of both lists available in constant time.

Efficient queues

Recall the queue representation:

data Queue a = Q ! Int [a] ! Int [a]

As we will see, the work of reversing the list can be distributed
well by chosing the following invariant for Q lf fs lb bs:

lf > lb

In particular, length fs = = 0 if and only if the queue is empty.

We need the lengths of both lists available in constant time.

empty and head are simple due to the invariant

empty :: Queue a
empty = Q 0 [] 0 []

head :: Queue a → a
head (Q (f : fs) bs) = f
head (Q []) = error "empty queue"

empty and head are simple due to the invariant

empty :: Queue a
empty = Q 0 [] 0 []

head :: Queue a → a
head (Q (f : fs) bs) = f
head (Q []) = error "empty queue"

What about tail and snoc?

tail :: Queue a → a
tail (Q lf (f : fs) lb b) = makeQ (lf − 1) fs lb b
tail (Q []) = error "empty queue"

snoc :: a → Queue a → Queue a
snoc x (Q lf fs lb bs) = makeQ lf fs (lb + 1) (x : bs)

In both cases, we have to make a new queue using a call
makeQ lf f lb f ′, where we may need to re-establish the
invariant.

What about tail and snoc?

tail :: Queue a → a
tail (Q lf (f : fs) lb b) = makeQ (lf − 1) fs lb b
tail (Q []) = error "empty queue"

snoc :: a → Queue a → Queue a
snoc x (Q lf fs lb bs) = makeQ lf fs (lb + 1) (x : bs)

In both cases, we have to make a new queue using a call
makeQ lf f lb f ′, where we may need to re-establish the
invariant.

What about tail and snoc?

tail :: Queue a → a
tail (Q lf (f : fs) lb b) = makeQ (lf − 1) fs lb b
tail (Q []) = error "empty queue"

snoc :: a → Queue a → Queue a
snoc x (Q lf fs lb bs) = makeQ lf fs (lb + 1) (x : bs)

In both cases, we have to make a new queue using a call
makeQ lf f lb f ′, where we may need to re-establish the
invariant.

How to make a queue

makeQ :: Int → [a] → Int → [a]
→ Queue a

makeQ lf fs lb bs
| lf > lb = Q lf fs lb bs
| otherwise = Q (lf + lb) (fs ++ reverse bs) 0 []

Why is this implementation “better”?

(drawing and lots of handwaving)

Read Okasaki’s book for a proof.

Why is this implementation “better”?

(drawing and lots of handwaving)

Read Okasaki’s book for a proof.

Queues in GHC

I Available in Data.Queue (ghc-6.4).
I Based on a slight variation of the implementation

described here, allowing operations in constant worse-case
time (“real-time queues”).

I Representation of queues is then

data Queue a = Q [a] [a] [a]

where the third list is used to maintain the unevaluated
part of the front queue.

I Described in the paper Simple and efficient functional queues
and deques, JFP 5(4), pages 583–592, October 1995, by Chris
Okasaki.

I Also described in Okasaki’s book.

Queues in GHC

I Available in Data.Queue (ghc-6.4).
I Based on a slight variation of the implementation

described here, allowing operations in constant worse-case
time (“real-time queues”).

I Representation of queues is then

data Queue a = Q [a] [a] [a]

where the third list is used to maintain the unevaluated
part of the front queue.

I Described in the paper Simple and efficient functional queues
and deques, JFP 5(4), pages 583–592, October 1995, by Chris
Okasaki.

I Also described in Okasaki’s book.

Queues in GHC

I Available in Data.Queue (ghc-6.4).
I Based on a slight variation of the implementation

described here, allowing operations in constant worse-case
time (“real-time queues”).

I Representation of queues is then

data Queue a = Q [a] [a] [a]

where the third list is used to maintain the unevaluated
part of the front queue.

I Described in the paper Simple and efficient functional queues
and deques, JFP 5(4), pages 583–592, October 1995, by Chris
Okasaki.

I Also described in Okasaki’s book.

Deques

A deque is a double-ended queue.

Operations like queue operations:

empty :: Deque a -- produce an empty queue
snoc :: a → Deque a → Deque a -- insert at the back
head :: Deque a → a -- get first element
tail :: Deque a → Deque a -- remove first element
toList :: Deque a → [a] -- queue to list
fromList :: [a] → Deque a -- list to queue

Additionally (also in constant time):

cons :: a → Deque a → Deque a -- insert at the front
init :: Deque a → Deque a -- remove last element
last :: Deque a → a -- get last element

Deques

A deque is a double-ended queue.

Operations like queue operations:

empty :: Deque a -- produce an empty queue
snoc :: a → Deque a → Deque a -- insert at the back
head :: Deque a → a -- get first element
tail :: Deque a → Deque a -- remove first element
toList :: Deque a → [a] -- queue to list
fromList :: [a] → Deque a -- list to queue

Additionally (also in constant time):

cons :: a → Deque a → Deque a -- insert at the front
init :: Deque a → Deque a -- remove last element
last :: Deque a → a -- get last element

Efficient deques

The previous implementation can easily be extended to work
for deques:

data Deque a = D ! Int [a] ! Int [a]

Of course, we have to make the representation more
symmetric. The invariant for D lf fs lb bs becomes:

lf 6 c∗lb + 1 ∧ lr 6 c∗lf + 1

(for some constant c > 1).

Implementation of deques

I The implementation of makeQ must be adapted to
maintain this invariant.

I The other operations are straight-forward, we only have to
pay attention to the one-element queue.

I How much time does it cost to reverse a deque?
I Unfortunately, there currently is no standard Haskell

library for deques.

Catenable queues or deques

I Queues or deques that support efficient concatenation are
called catenable.

I It is possible to support concatenation in O(log n) and
even in O(1) amortized time, but this requires a
completely different implementation of queues/deques.

I Again, there currently are no standard Haskell libraries for
catenable queues and deques.

Overview

Introduction (Lists)

Arrays

Unboxed types

Queues and deques

Summary and next lecture

Summary

I Lists are everwhere in Haskell, for a lot of good reasons.
I Functional data structures are persistent.
I Persistence and efficiency and evaluation order all interact.
I Array updates are inherently inefficient in a functional

language.
I Queues and deques support many operations efficiently

that normal lists do not.
I In a persistent setting, queue and deque operations can be

implemented with the same complexity bounds as in an
ephemeral setting.

I GHC has a standard library that supports many (but not all
desirable) datastructures, for instance lists, queues, arrays
in all flavors, but also unboxed types and packed strings.

Next lecture

I Pattern matching, abstract datatypes, views.
I Trees, finite maps and sets.
I . . .

	Introduction (Lists)
	Arrays
	Unboxed types
	Queues and deques
	Summary and next lecture

