Expanding the Universe

Andres Löh with lots of inspiration from José Pedro Magalhães and Conor McBride

(F) Well-Typed

23 May 2011

Why datatype-generic programming?

Motivation (old story):

- capture behaviour that depends on the structure of types;
- capture types that are depend on the structure of types;
- avoid boilerplate, only write the interesting parts of functions;
- write code that is robust against changes in the datatypes.

Some DGP history

Haskell only, and incomplete

- ► PolyP (Jeuring and Jansson 1997)
- ► A new approach to generic FP (Hinze 1999)
- Derivable Type Classes (Hinze 2000)
- ► Generic Haskell (Hinze, Jeuring, Löh 2000–03)
- ► SYB . . . (Lämmel, Peyton Jones, Hinze, Oliveira, Löh 2003–06)
- ... Generics for the Masses (Hinze, Oliveira, Löh 2004–06)
- RepLib (Weirich 2006)
- Regular (Noort, Rodriguez, Holdermans, Jeuring, Heeren 2008)
- Instant Generics (Chakravarty, Ditu, Leshchinskiy 2009)
- MultiRec (Rodriguez, Holdermans, Jeuring, Löh 2009)
- Generic deriving (Magalhães, Dijkstra, Jeuring, Löh 2010)

Why so many approaches?

Many technical differences:

- Which Haskell constructs are used to encode certain concepts.
- Mainly a language extension, or mainly a library.

Why so many approaches?

Many technical differences:

- Which Haskell constructs are used to encode certain concepts.
- Mainly a language extension, or mainly a library.

Some conceptual differences:

- How are datatypes being viewed?
- ► The view dictates which generic functions can easily be expressed and which not.
- The view also restricts the datatypes generic functions can operate on.

Comparing DGP approaches

Several attempts have been made to categorize approaches:

- by view, representation mechanism, overloading mechanism;
- by a large table of features.

Comparing DGP approaches

Several attempts have been made to categorize approaches:

- by view, representation mechanism, overloading mechanism;
- by a large table of features.

There is surprisingly little work on *formally* comparing different approaches.

Agda

Agda is a dependently typed programming language with Haskell-inspired syntax.

Very suitable for generic programming:

- universe constructions (see soon);
- no syntactic difference between terms and types, thus between generic functions and generic types;
- similarity with Haskell allows us to code in a similar style;
- we can prove properties of functions in Agda.

The (long-term) plan

- Implement (model) many approaches to GP in Haskell using Agda.
- Relate the approaches in Agda, by means of Agda functions and properties.
- Gain more understanding of the approaches.
- Fix remaining problems in Agda.
- Either port back to Haskell, or enjoy using GP in Agda.

This talk

- ▶ Look at regular, PolyP, multirec.
- Model these approaches as universes in Agda.
- Observe the similarities, and see how one extends the other.
- Generalize.

A type (Set) of codes:

```
data Code : Set where ...
```

An interpretation function taking codes to types:

Example

Codes (a familiar type):

data $\mathbb{N} :$ Set where

 $zero: \mathbb{N}$

 $\mathsf{suc} \ : \ \mathbb{N} \to \mathbb{N}$

Example

Codes (a familiar type):

```
data \mathbb{N}: Set where
```

zero : ℕ

 $\text{suc} \ : \ \mathbb{N} \to \mathbb{N}$

Interpretation:

```
\text{Vec} \,:\, \mathbb{N} \to \text{Set} \to \text{Set}
```

Vec (zero) A $= \top$ -- the "unit" type

Vec (suc n) $A = A \times Vec n A$ -- a pair

We have defined "vectors" of a given type.

A "generic" function

```
\begin{array}{lll} \text{sum} \,:\, (n\,:\,\mathbb{N}) \to \text{Vec n}\,\mathbb{N} \to \mathbb{N} \\ \text{sum zero} & tt &= \text{zero} \\ \text{sum (suc n)}\,(x,xs) &= x + \text{sum n xs} \end{array}
```


A "generic" function

```
\begin{array}{lll} \text{sum} \,:\, (n\,:\,\mathbb{N}) \to \text{Vec n}\,\mathbb{N} \to \mathbb{N} \\ \text{sum zero} & tt &= \text{zero} \\ \text{sum (suc n)}\,(x,xs) &= x + \text{sum n}\,xs \end{array}
```

In general:

```
\begin{array}{c} \text{generic} \,:\, (C \,:\, Code) \rightarrow \llbracket\, C\, \rrbracket \rightarrow \, \ldots \\ \dots \end{array}
```

We parameterize over the code, and then do something with its interpretation.

Remarks

- Universes need not be unfamiliar types.
- One type of codes can admit several interpretations (e.g. Vec and Fin).
- Interpretations can also be defined as datatypes.
- Codes and interpretation functions are first-class.
- So we can do other things with codes than to interpret them; we can define generic functions over them, but also transform them, extend them, restrict them etc.

A more interesting universe

data Code: Set where

U : Code

 $\textbf{K} \qquad : \ \textbf{Set} \rightarrow \textbf{Code}$

I : Code

 $- \oplus - : \mathsf{Code} \to \mathsf{Code} \to \mathsf{Code}$

 $_ \otimes _ : \ \mathsf{Code} \to \mathsf{Code} \to \mathsf{Code}$

 $_ \circledcirc _ \ : \ \mathsf{Code} \to \mathsf{Code} \to \mathsf{Code}$

A more interesting universe

```
data Code : Set where

U : Code

K : Set → Code

I : Code

_{-}⊕ _{-}: Code _{-} Code _{-} Code

_{-} ⊗ _{-}: Code _{-} Code _{-} Code

_{-} ⊗ _{-}: Code _{-} Code _{-} Code

_{-} ⊗ _{-}: Code _{-} Code _{-} Code
```

Encoding types

```
\label{eq:maybeC} \begin{array}{l} \text{MaybeC} : \text{Code} \\ \text{MaybeC} = \textbf{U} \oplus \textbf{I} \\ \\ \text{Maybe} : \text{Set} \to \text{Set} \\ \\ \text{Maybe} = \llbracket \text{MaybeC} \rrbracket \\ \\ \text{nothing} : \{ A : \text{Set} \} \to \text{Maybe A} \\ \\ \text{nothing} = \text{inj}_1 \text{ tt} \\ \\ \text{just} : \{ A : \text{Set} \} \to A \to \text{Maybe A} \\ \\ \text{just} = \text{inj}_2 \end{array}
```

```
\begin{array}{lll} \text{SquareC} &: \text{Code} \\ \text{SquareC} &= \textbf{I} \otimes \textbf{I} \\ \text{Square} &: \text{Set} \rightarrow \text{Set} \\ \text{Square} &= \llbracket \text{SquareC} \rrbracket \end{array}
```


Example function: map

```
\begin{array}{lll} \text{map} : (F: \text{Code}) \left\{A \ B: \ \text{Set}\right\} \rightarrow \\ & (A \rightarrow B) \rightarrow \llbracket \ F \ \rrbracket \ A \rightarrow \llbracket \ F \ \rrbracket \ B \\ \text{map} \ \textbf{U} & \text{f tt} & = \text{tt} \\ \text{map} \ (\textbf{K} \ A) & \text{f c} & = \text{c} \\ \text{map} \ \textbf{I} & \text{f x} & = \text{f x} \\ \text{map} \ (F \oplus G) \ f \ (\text{inj}_1 \ x) & = \text{inj}_1 \ (\text{map} \ F \ f \ x) \\ \text{map} \ (F \oplus G) \ f \ (\text{inj}_2 \ x) & = \text{inj}_2 \ (\text{map} \ G \ f \ x) \\ \text{map} \ (F \otimes G) \ f \ (x,y) & = \text{map} \ F \ f \ x, \text{map} \ G \ f \ y \\ \text{map} \ (F \otimes G) \ f \ x & = \text{map} \ F \ (\text{map} \ G \ f) \ x \\ \end{array}
```


Examples

```
\begin{array}{l} \mathsf{test}_1 \; : \; \mathsf{map} \; \mathsf{MaybeC} \; \; (\lambda \; \mathsf{x} \to \mathsf{suc} \; \mathsf{x}) \; (\mathsf{just} \; 7) \equiv \mathsf{just} \; 8 \\ \mathsf{test}_1 \; = \; \mathsf{refl} \\ \mathsf{test}_2 \; : \; \mathsf{map} \; \mathsf{SquareC} \; (\lambda \; \mathsf{x} \to \mathsf{suc} \; \mathsf{x}) \; (2,3) \; \equiv (3,4) \\ \mathsf{test}_2 \; = \; \mathsf{refl} \end{array}
```


Examples

```
\begin{array}{ll} test_1 \ : \ map \ MaybeC \ \ (\lambda \ x \to suc \ x) \ (just \ 7) \equiv just \ 8 \\ test_1 \ = \ refl \\ test_2 \ : \ map \ SquareC \ \ (\lambda \ x \to suc \ x) \ \ (2,3) \ \ \equiv (3,4) \\ test_2 \ = \ refl \end{array}
```

Still, the universe isn't particularly interesting, because we cannot describe recursive structures.

Adding fixed points

```
data \mu (F : Code) : Set where \langle \_ \rangle : \llbracket F \rrbracket (\mu F) \to \mu F

Nat : Set 
Nat = \mu MaybeC 
nzero : Nat 
nzero = \langle nothing \rangle 
nsuc : Nat \to Nat 
nsuc n = \langle just n \rangle
```


Another datatype

Generic recursion schemes

```
cata : {F : Code} {A : Set} \rightarrow ([F] A \rightarrow A) \rightarrow \mu F \rightarrow A cata {F} \phi \langle x \rangle = \phi (map F (cata \phi) x)
```

Generic recursion schemes

```
\begin{array}{ll} \mathsf{cata} \,:\, \{\,\mathsf{F} \,:\, \mathsf{Code}\,\} \,\, \{\,\mathsf{A} \,:\, \mathsf{Set}\,\} \,\rightarrow\, (\,[\![\,\mathsf{F}\,]\!]\,\, \mathsf{A} \,\rightarrow\, \mathsf{A}) \,\rightarrow\, \mu\,\,\mathsf{F} \,\rightarrow\, \mathsf{A} \\ \mathsf{cata}\,\, \{\,\mathsf{F}\,\} \,\,\phi\,\,\langle\,\,\mathsf{x}\,\,\rangle \,\,=\,\, \phi\,\,(\mathsf{map}\,\,\mathsf{F}\,\,(\mathsf{cata}\,\,\phi)\,\,\mathsf{x}) \end{array}
```

```
\begin{array}{ll} \text{plus} \ : \ \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat} \\ \text{plus} \ m \ = \ \text{cata} \ [\text{const} \ m, \text{nsuc}] \end{array}
```

```
reverse : Tree \rightarrow Tree reverse = cata [const leaf, uncurry node \circ swap]
```


Generic recursion schemes

```
\begin{array}{ll} \mathsf{cata} \,:\, \{\, \mathsf{F} \,:\, \mathsf{Code} \,\} \,\, \{\, \mathsf{A} \,:\, \mathsf{Set} \,\} \,\rightarrow\, (\,[\![\, \mathsf{F} \,]\!] \,\, \mathsf{A} \,\rightarrow\, \mathsf{A}) \,\rightarrow\, \mu \,\, \mathsf{F} \,\rightarrow\, \mathsf{A} \\ \mathsf{cata} \,\, \{\, \mathsf{F} \,\} \,\, \phi \,\, \langle\, \, \mathsf{x} \,\, \rangle \,\,=\,\, \phi \,\, (\mathsf{map} \,\, \mathsf{F} \,\, (\mathsf{cata} \,\, \phi) \,\, \mathsf{x}) \end{array}
```

```
plus : Nat \rightarrow Nat \rightarrow Nat plus m = cata [const m, nsuc]
```

 $\begin{array}{ll} \text{reverse} \; : \; \text{Tree} \to \text{Tree} \\ \text{reverse} \; = \; \text{cata} \; [\text{const leaf}, \text{uncurry node} \circ \text{swap}] \end{array}$

$$[_,_] \; : \; \{ \mathsf{A} \; \mathsf{B} \; \mathsf{C} \; : \; \mathsf{Set} \} \to (\mathsf{A} \to \mathsf{C}) \to (\mathsf{B} \to \mathsf{C}) \to (\mathsf{A} \uplus \mathsf{B}) \to \mathsf{C}$$

More generic recursion schemes

```
ana : {F : Code} {A : Set} \rightarrow (A \rightarrow [F]A) \rightarrow A \rightarrow \muF ana {F} \psi x = \langle map F (ana \psi) (\psi x) \rangle
```

Observations

- Almost exact match with the Haskell library regular.
- We still cannot encode recursive structures with parameters.
- We also cannot encode mutually recursive structures.

From regular to PolyP

We move from codes of functors to codes of bifunctors.

```
data Code<sub>2</sub>: Set where
```

U : Code₂

 $\textbf{K} \hspace{0.5cm} : \hspace{0.1cm} \text{Set} \rightarrow \text{Code}_2$

Par : Code₂
I : Code₂

 $\begin{array}{ll} - \oplus - : \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \\ - \otimes - : \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \end{array}$

- Instead of one variable, we have two.
- We ignore composition for now.

Interpretation

Mapping

```
\begin{array}{lll} \text{bimap} : (F: Code_2) \left\{A \ B \ C \ D: Set\right\} \rightarrow \\ & (A \rightarrow B) \rightarrow (C \rightarrow D) \rightarrow \llbracket \ F \ \rrbracket_2 \ A \ C \rightarrow \llbracket \ F \ \rrbracket_2 \ B \ D \\ & \text{bimap} \ \textbf{U} & \text{fg tt} & = \ tt \\ & \text{bimap} \ (\textbf{K} \ A) & \text{fg c} & = \ c \\ & \text{bimap} \ Par & \text{fg y} & = \ f \ y \\ & \text{bimap} \ \textbf{I} & \text{fg x} & = \ g \ x \\ & \text{bimap} \ (F \oplus G) \ f \ g \ (inj_1 \ x) & = \ inj_1 \ (bimap \ F \ f \ g \ x) \\ & \text{bimap} \ (F \oplus G) \ f \ g \ (inj_2 \ x) & = \ inj_2 \ (bimap \ G \ f \ g \ y) \\ & \text{bimap} \ (F \otimes G) \ f \ g \ (x,y) & = \ bimap \ F \ f \ g \ x, bimap \ G \ f \ g \ y \\ \end{array}
```


Fixed points

data μ (F : Code₂) (A : Set) : Set where $\langle _ \rangle$: $\llbracket \mathsf{F} \rrbracket_2 \mathsf{A} (\mu \mathsf{F} \mathsf{A}) \to \mu \mathsf{F} \mathsf{A}$

Fixed points

```
data \mu (F : Code<sub>2</sub>) (A : Set) : Set where \langle \underline{\ } \rangle : [\![ \ \mathsf{F} \ ]\!]_2 A (\mu \ \mathsf{F} \ \mathsf{A}) \to \mu \ \mathsf{F} \ \mathsf{A}
```

```
cata : {F : Code<sub>2</sub>} {A R : Set} \rightarrow (\llbracket F \rrbracket_2 A R \rightarrow R) \rightarrow (\mu F A \rightarrow R) cata {F} \phi \langle x \rangle = \phi (bimap F id (cata \phi) x)
```


Examples

List : Set \rightarrow Set List = μ (**U** \oplus (Par \otimes **I**))

Examples

```
List : Set \rightarrow Set

List = \mu (\mathbf{U} \oplus (\mathsf{Par} \otimes \mathbf{I}))

nil : {A : Set} \rightarrow List A

nil = \langle \mathsf{inj}_1 \mathsf{tt} \rangle

cons : {A : Set} \rightarrow A \rightarrow List A \rightarrow List A

cons x xs = \langle \mathsf{inj}_2 (\mathsf{x}, \mathsf{xs}) \rangle
```


Examples

```
List : Set \rightarrow Set

List = \mu (\mathbf{U} \oplus (\mathsf{Par} \otimes \mathbf{I}))

nil : {A : Set} \rightarrow List A

nil = \langle \mathsf{inj}_1 \mathsf{tt} \rangle

cons : {A : Set} \rightarrow A \rightarrow List A \rightarrow List A

cons x xs = \langle \mathsf{inj}_2 (\mathsf{x}, \mathsf{xs}) \rangle
```

```
\begin{array}{lll} caseList \; : \; \{A\ B\ :\ Set\} \to List\ A \to B \to (A \to List\ A \to B) \to B \\ caseList \; \langle\ inj_1\ tt\ \rangle & n\ c \; = \; n \\ caseList \; \langle\ inj_2\ (x,xs)\ \rangle\ n\ c \; = \; c\ x\ xs \\ foldr \; : \; \{A\ B\ :\ Set\} \to (A \to B \to B) \to B \to List\ A \to B \\ foldr\ c\ n \; = \; cata\ [const\ n, uncurry\ c] \end{array}
```


Other types

```
data Maybe a = Nothing | Just a -- Haskell
```

 $\begin{array}{lll} \mathsf{Maybe} \,:\, \mathsf{Set} \to \mathsf{Set} \\ \mathsf{Maybe} \,=\, \mu \, (\mathbf{U} \,\oplus\, \mathsf{Par}) \end{array}$

Other types

```
data Maybe a = Nothing \mid Just a -- Haskell

Maybe : Set \rightarrow Set
Maybe = \mu (\mathbf{U} \oplus Par)

data Tree a = Leaf a \mid Node (Tree a) (Tree a) -- Haskell

Tree : Set \rightarrow Set
Tree = \mu (Par \oplus (\mathbf{I} \otimes \mathbf{I}))
```


Other types

Rose : Set \rightarrow Set

Rose = μ (Par \otimes {!!})

```
data Maybe a = Nothing | Just a -- Haskell
Maybe : Set \rightarrow Set
Maybe = \mu (U \oplus Par)
data Tree a = Leaf a | Node (Tree a) (Tree a) -- Haskell
Tree : Set \rightarrow Set
Tree = \mu (Par \oplus (I \otimes I))
data Rose a = Fork a [Rose a]
```


What about composition?

Extending the codes

What about composition?

Extending the interpretation

```
mutual
     \llbracket \ \rrbracket : \mathsf{Code}_2 \to \mathsf{Set} \to \mathsf{Set} \to \mathsf{Set}
    \llbracket \mathbf{U} \qquad \rrbracket \mathbf{X} \mathbf{Y} = \top
    [KA]XY = A
    \| Par \| XY = X
    [ I  [ X Y = Y ]
    \llbracket F \oplus G \rrbracket X Y = \llbracket F \rrbracket X Y \uplus \llbracket G \rrbracket X Y
    \llbracket F \otimes G \rrbracket X Y = \llbracket F \rrbracket X Y \times \llbracket G \rrbracket X Y
    \llbracket F \otimes G \rrbracket X Y = \mu F (\llbracket G \rrbracket X Y)
    data \mu (F : Code<sub>2</sub>) (A : Set) : Set where
         \langle \rangle : \llbracket \mathsf{F} \rrbracket \mathsf{A} (\mu \mathsf{F} \mathsf{A}) \to \mu \mathsf{F} \mathsf{A}
```

We now have the actual PolyP universe.

From the PolyP library

```
mutual
  bimap : (F : Code_2) \{A B C D : Set\} \rightarrow
              (\mathsf{A} \to \mathsf{B}) \to (\mathsf{C} \to \mathsf{D}) \to \llbracket \, \mathsf{F} \, \rrbracket \, \mathsf{A} \, \mathsf{C} \to \llbracket \, \mathsf{F} \, \rrbracket \, \mathsf{B} \, \mathsf{D}
  bimap \mathbf{U} f g tt = tt
  bimap (K A) fgc = c
  bimap Par fgy = fy
  bimap I f g x = g x
  bimap (F \oplus G) f g (inj_1 x) = inj_1 (bimap F f g x)
  bimap (F \oplus G) f g (inj_2 x) = inj_2 (bimap G f g x)
  bimap (F \otimes G) fg(x,y) = bimap F fg x, bimap G fg y
  bimap (F \circledcirc G) fg x = pmap \{F\} (bimap G fg) x
  pmap : \{F : Code_2\} \{A B : Set\} \rightarrow
              (A \rightarrow B) \rightarrow \mu F A \rightarrow \mu F B
  pmap \{F\} f \langle x \rangle = \langle bimap F f (pmap \{F\} f) x \rangle
```

From the PolyP library

```
mutual
  fsum : (F : Code_2) \rightarrow \llbracket F \rrbracket \mathbb{N} \mathbb{N} \rightarrow \mathbb{N}
  fsum \mathbf{U} tt = 0
  fsum (K A) c = 0
  fsum Par x = x
  fsum I x = x
  fsum (F \oplus G) (inj_1 x) = fsum F x
  fsum (F \oplus G) (inj_2 y) = fsum G y
  fsum (F \otimes G)(x,y) = \text{fsum } Fx + \text{fsum } Gy
  fsum (F \otimes G) x = psum \{F\} (pmap (fsum G) x)
  psum : \{F : Code_2\} \rightarrow \mu F \mathbb{N} \rightarrow \mathbb{N}
  psum \{F\} = cata (fsum F)
```

From the PolyP library

```
mutual
  fflatten : (F : Code<sub>2</sub>) {A : Set} \rightarrow
                \llbracket \mathsf{F} \rrbracket \text{ (List A) (List A)} \rightarrow \mathsf{List A}
  fflatten U tt = []
  fflatten (K A) c = []
  fflatten Par x = x
  fflatten \mathbf{I} \mathbf{x} = \mathbf{x}
  fflatten (F \oplus G) (inj<sub>1</sub> x) = fflatten F x
  fflatten (F \oplus G) (inj<sub>2</sub> x) = fflatten G x
  fflatten (F \otimes G) (x,y) = fflatten F x + fflatten G y
  fflatten (F \otimes G) x = concat (flatten \{F\}
                                                     (pmap (fflatten G) x))
  flatten : {F : Code<sub>2</sub>} {A : Set} \rightarrow \mu F A \rightarrow List A
  flatten \{F\} \langle x \rangle = \text{fflatten } F \text{ (bimap } F [\_] \text{ flatten } x)
```


Limitations of PolyP

- No mutually recursive datatypes.
- ▶ No nested (or other forms of indexed) datatypes.

Limitations of PolyP

- No mutually recursive datatypes.
- No nested (or other forms of indexed) datatypes.
- As a reaction, a large number of Haskell approaches without fixed points were introduced.
- Translating this to Agda, it means that inductive types get recursive (infinite) codes.
- We can model that with a coinductive type of codes (but not in this talk).

Recap: regular

```
\begin{array}{lll} \textbf{data} \ \mathsf{Code} & : \ \mathsf{Set} \ \textbf{where} \\ \textbf{U} & : \ \mathsf{Code} \\ \textbf{K} & : \ \mathsf{Set} \to \mathsf{Code} \\ \textbf{I} & : \ \mathsf{Code} \\ \_ \oplus \_ : \ \mathsf{Code} \to \mathsf{Code} \to \mathsf{Code} \\ \_ \otimes \_ : \ \mathsf{Code} \to \mathsf{Code} \to \mathsf{Code} \\ \_ \otimes \_ : \ \mathsf{Code} \to \mathsf{Code} \to \mathsf{Code} \\ \_ \otimes \_ : \ \mathsf{Code} \to \mathsf{Code} \to \mathsf{Code} \end{array}
```

Recap: regular

```
data Code : Set where
```

U : Code

 $\textbf{K} \hspace{0.5cm} : \hspace{0.1cm} \textbf{Set} \rightarrow \textbf{Code}$

I : Code

 $_ \oplus _$: Code \rightarrow Code \rightarrow Code $_ \otimes _$: Code \rightarrow Code \rightarrow Code \rightarrow Code \rightarrow Code

 $[\![_]\!] \; : \; \mathsf{Code} \to \mathsf{Set} \to \mathsf{Set}$

Recap: regular

```
\begin{array}{lll} \textbf{data} \ \textbf{Code} & : \ \textbf{Set} \ \textbf{where} \\ \textbf{U} & : \ \textbf{Code} \\ \textbf{K} & : \ \textbf{Set} \rightarrow \textbf{Code} \\ \textbf{I} & : \ \textbf{Code} \\ - \oplus - : \ \textbf{Code} \rightarrow \textbf{Code} \rightarrow \textbf{Code} \\ - \otimes - : \ \textbf{Code} \rightarrow \textbf{Code} \rightarrow \textbf{Code} \\ - \otimes - : \ \textbf{Code} \rightarrow \textbf{Code} \rightarrow \textbf{Code} \\ - \otimes - : \ \textbf{Code} \rightarrow \textbf{Code} \rightarrow \textbf{Code} \\ \end{array}
```

```
data \mu (F : Code) : Set where \langle \ \rangle : \llbracket F \rrbracket (\mu F) \rightarrow \mu F
```

 $\llbracket \ \rrbracket : \mathsf{Code} \to \mathsf{Set} \to \mathsf{Set}$

Recap: PolyP

data Code₂: Set where

U : Code₂

 $\textbf{K} \qquad : \ \text{Set} \to \text{Code}_2$

Par : Code₂
I : Code₂

 $\begin{array}{ll} - \oplus - : \; \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \\ - \otimes - : \; \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \end{array}$

Recap: PolyP

```
data Code2 : Set where
```

U : Code₂

 $\textbf{K} \qquad : \ Set \rightarrow Code_2$

Par : Code₂

 $\begin{array}{ll} - \oplus - : \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \\ - \otimes - : \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \end{array}$

 $\llbracket _ \rrbracket \; : \; \mathsf{Code}_2 \to \mathsf{Set} \to \mathsf{Set} \to \mathsf{Set}$

Recap: PolyP

```
\begin{array}{lll} \textbf{data} \ \mathsf{Code}_2 \ : \ \mathsf{Set} \ \textbf{where} \\ \textbf{U} & : \ \mathsf{Code}_2 \\ \textbf{K} & : \ \mathsf{Set} \to \mathsf{Code}_2 \\ \mathsf{Par} & : \ \mathsf{Code}_2 \\ \textbf{I} & : \ \mathsf{Code}_2 \\ - \oplus - & : \ \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \\ - \otimes - & : \ \mathsf{Code}_2 \to \mathsf{Code}_2 \to \mathsf{Code}_2 \end{array}
```

```
data \mu (F : Code<sub>2</sub>) (A : Set) : Set where
```

 $\langle _ \rangle$: $\llbracket \mathsf{F} \rrbracket_2 \mathsf{A} (\mu \mathsf{F} \mathsf{A}) \to \mu \mathsf{F} \mathsf{A}$

 $\llbracket \ \rrbracket : \mathsf{Code}_2 \to \mathsf{Set} \to \mathsf{Set} \to \mathsf{Set}$

Mutually recursive datatypes

Can we define a universe that describes many functors at once?

Mutually recursive datatypes

Can we define a universe that describes many functors at once?

```
\begin{array}{lll} \textbf{data} \ \mathsf{Code} \ (\mathsf{lx} \ : \ \mathsf{Set}) \ : \ \mathsf{Set} \ \textbf{where} \\ \textbf{U} & : \ \mathsf{Code} \ \mathsf{lx} \\ \textbf{K} & : \ (\mathsf{A} \ : \ \mathsf{Set}) \to \mathsf{Code} \ \mathsf{lx} \\ \textbf{I} & : \ \mathsf{lx} \to \mathsf{Code} \ \mathsf{lx} \\ - \oplus _{-} : \ \mathsf{Code} \ \mathsf{lx} \to \mathsf{Code} \ \mathsf{lx} \to \mathsf{Code} \ \mathsf{lx} \\ - \otimes _{-} : \ \mathsf{Code} \ \mathsf{lx} \to \mathsf{Code} \ \mathsf{lx} \to \mathsf{Code} \ \mathsf{lx} \end{array}
```

Mutually recursive datatypes

Can we define a universe that describes many functors at once?

```
\begin{array}{lll} \textbf{data} \ \textbf{Code} \ (\textbf{lx} : \textbf{Set}) : \textbf{Set} \ \textbf{where} \\ \textbf{U} & : \textbf{Code} \ \textbf{lx} \\ \textbf{K} & : (\textbf{A} : \textbf{Set}) \rightarrow \textbf{Code} \ \textbf{lx} \\ \textbf{I} & : \textbf{lx} \rightarrow \textbf{Code} \ \textbf{lx} \\ - \oplus - : \textbf{Code} \ \textbf{lx} \rightarrow \textbf{Code} \ \textbf{lx} \rightarrow \textbf{Code} \ \textbf{lx} \\ - \otimes - : \textbf{Code} \ \textbf{lx} \rightarrow \textbf{Code} \ \textbf{lx} \rightarrow \textbf{Code} \ \textbf{lx} \end{array}
```

```
! \qquad : \ \mathsf{Ix} \to \mathsf{Code} \ \mathsf{Ix}
```


Interpretation

 $\begin{array}{ll} \text{Indexed} \, : \, \text{Set} \to \text{Set} \\ \text{Indexed} \, \, \text{Ix} \, = \, \text{Ix} \to \text{Set} \end{array}$

Interpretation

```
Indexed : Set \rightarrow Set
Indexed Ix = Ix \rightarrow Set
\llbracket \ \rrbracket : \{ \mathsf{Ix} : \mathsf{Set} \} \to \mathsf{Code} \ \mathsf{Ix} \to \mathsf{Indexed} \ \mathsf{Ix} \to \mathsf{Indexed} \ \mathsf{Ix}
\llbracket \mathbf{U} \qquad \rrbracket \, \mathsf{X} \, \mathsf{i} \, = \, \top
\| \mathbf{K} \mathbf{A} \| \mathbf{X} \mathbf{i} = \mathbf{A}
[I] Xi = Xj
\llbracket F \oplus G \rrbracket X i = \llbracket F \rrbracket X i \uplus \llbracket G \rrbracket X i
\llbracket F \otimes G \rrbracket X i = \llbracket F \rrbracket X i \times \llbracket G \rrbracket X i
[ ! ] Xi = ] \equiv i
```


Example

 $\begin{tabular}{ll} $_\rhd_: \{Ix: Set\} \to Code\ Ix \to Ix \to Code\ Ix \\ $F\rhd i = F \otimes !\ i$ \end{tabular}$

Example

```
\begin{tabular}{ll} $\_\rhd\_: \{Ix: Set\} \to Code \ Ix \to Ix \to Code \ Ix \\ $F\rhd i = F \otimes !i \end{tabular}
```

Haskell:

```
data Zero = ZA Zero Zero | ZB One One | ZC Zero data One = OA Zero One | OB One Zero | OC One
```

Agda encoding without fixed point:

Map

```
\begin{array}{l} \_ \rightrightarrows \_ : \ \{ \text{Ix} : \text{Set} \} \to \text{Indexed Ix} \to \text{Indexed Ix} \to \text{Set} \\ \mathsf{R} \ \rightrightarrows \ \mathsf{S} \ = \ (\text{ix} : \_) \to \mathsf{R} \ \text{ix} \to \mathsf{S} \ \text{ix} \end{array}
```


Map

```
\exists \exists : {Ix : Set} \rightarrow Indexed Ix \rightarrow Indexed Ix \rightarrow Set
 R \implies S = (ix : \_) \rightarrow R ix \rightarrow S ix
map : \{Ix : Set\}\ (F : Code\ Ix) \rightarrow \{RS : Indexed\ Ix\} \rightarrow \{RS : Indexed\
                                             (\mathsf{R} \ \rightrightarrows \ \mathsf{S}) \to \llbracket \ \mathsf{F} \ \rrbracket \ \mathsf{R} \ \rightrightarrows \ \llbracket \ \mathsf{F} \ \rrbracket \ \mathsf{S}
map U fi = tt
map(K X) fix = x
map(Ij) fix = fix
map (F \oplus G) f i (inj_1 x) = inj_1 (map F f i x)
 map (F \oplus G) fi (inj_2 y) = inj_2 (map G fi y)
 map(F \otimes G)fi(x,y) = map Ffix, map Gfiy
map(!j) fix = x
```


Fixed points

```
data \mu {Ix : Set} (F : Code Ix) (ix : Ix) : Set where \langle \underline{\ } \rangle : \llbracket \ \mathsf{F} \ \rrbracket (\mu F) ix \rightarrow \mu F ix
```

```
cata : {Ix : Set} {F : Code Ix} {R : Indexed Ix} \rightarrow (\llbracket F \rrbracket R \Rightarrow R) \rightarrow (\mu F \Rightarrow R) cata {F = F} \phi ix \langle x \rangle = \phi ix (map F (cata \phi) ix x)
```


Status

So far, we have seen:

- the regular universe: fixed points of functors (no parameters, one recursive position)
- the PolyP universe: fixed points of bifunctors (one parameter, one recursive position)
- the multirec universe: fixed points of indexed functors (no parameters, several recursive positions)

Status

So far, we have seen:

- the regular universe: fixed points of functors (no parameters, one recursive position)
- the PolyP universe: fixed points of bifunctors (one parameter, one recursive position)
- the multirec universe: fixed points of indexed functors (no parameters, several recursive positions)
- Can we also have many parameters?

Status

So far, we have seen:

- the regular universe: fixed points of functors (no parameters, one recursive position)
- the PolyP universe: fixed points of bifunctors (one parameter, one recursive position)
- the multirec universe: fixed points of indexed functors (no parameters, several recursive positions)
- Can we also have many parameters? Yes, by decoupling input from output positions.

Codes

```
\begin{array}{lll} \textbf{data} \ \mathsf{Code} \ (\mathsf{Ix} \ : \ \mathsf{Set}) \ (\mathsf{Ox} \ : \ \mathsf{Set}) \ : \ \mathsf{Set} \ \textbf{where} \\ \textbf{U} & : \ \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \\ \textbf{K} & : \ (\mathsf{A} \ : \ \mathsf{Set}) \to \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \\ \textbf{I} & : \ \mathsf{Ix} \to \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \\ - \oplus_- \ : \ \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \to \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \to \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \\ - \otimes_- \ : \ \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \to \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \\ - \otimes_- \ : \ \{\mathsf{Mx} \ : \ \mathsf{Set}\} \to \\ & \quad \mathsf{Code} \ \mathsf{Mx} \ \mathsf{Ox} \to \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \\ ! & : \ \mathsf{Ox} \to \mathsf{Code} \ \mathsf{Ix} \ \mathsf{Ox} \\ \end{array}
```

Composition becomes easier again.

Interpretation

Only the type changes.

Map

Again, only the type changes:

```
map : \{Ix Ox : Set\} (F : Code Ix Ox) \rightarrow
       \{RS : Indexed Ix\} \rightarrow (R \Rightarrow S) \rightarrow [\![F]\!]R \Rightarrow [\![F]\!]S
map U
       fi_{-} = tt
map(\mathbf{K} X) \quad fix = x
map(Ij) fix = fix
map (F \oplus G) f i (inj_1 x) = inj_1 (map F f i x)
map(F \oplus G) fi(inj_2 y) = inj_2 (map G fi y)
map(F \otimes G) fi(x,y) = map F fix, map G fiy
map(F \otimes G) fix = map F(map G f) ix
map(!j) fix = x
```


Indexed Bifunctors

To distinguish parameter positions from recursive positions, let us reintroduce bifunctors:

```
\begin{array}{lll} \mathsf{Code}_2 \ : \ (\mathsf{Ix} \ \mathsf{Jx} \ \mathsf{Ox} \ : \ \mathsf{Set}) \to \mathsf{Set} \\ \mathsf{Code}_2 \ \mathsf{Ix} \ \mathsf{Jx} \ \mathsf{Ox} \ = \ \mathsf{Code} \ (\mathsf{Ix} \uplus \mathsf{Jx}) \ \mathsf{Ox} \end{array}
```

Indexed Bifunctors

To distinguish parameter positions from recursive positions, let us reintroduce bifunctors:

```
\begin{array}{lll} \mathsf{Code}_2 \ : \ (\mathsf{Ix} \ \mathsf{Jx} \ \mathsf{Ox} \ : \ \mathsf{Set}) \to \mathsf{Set} \\ \mathsf{Code}_2 \ \mathsf{Ix} \ \mathsf{Jx} \ \mathsf{Ox} \ = \ \mathsf{Code} \ (\mathsf{Ix} \uplus \mathsf{Jx}) \ \mathsf{Ox} \end{array}
```


Fixed points

```
data \mu {Ix Ox : Set} (F : Code<sub>2</sub> Ix Ox Ox)
(R : Indexed Ix) : Indexed Ox where
\langle \_ \rangle : \llbracket F \rrbracket_2 R (\mu F R) \Rightarrow \mu F R
```

Compare with the PolyP version:

```
data \mu (F : Code<sub>2</sub>) (A : Set) : Set where \langle \ \rangle : \mathbb{F} \mathbb{F}_2 A (\mu F A) \rightarrow \mu F A
```


Fixed points in universe

Actually, the universe can be made closed under fixed points:

```
data Code (Ix : Set) (Ox : Set) : Set where ... Fix : (F : Code<sub>2</sub> Ix Ox Ox) \rightarrow Code Ix Ox ... \llbracket Fix F \rrbracket R i = \mu F R i
```

Catamorphism

```
cata : {Ix Ox : Set} {F : Code<sub>2</sub> Ix Ox Ox}

{A : Indexed Ix} {R : Indexed Ox} \rightarrow

(\llbracket F \rrbracket_2 A R \Rightarrow R) \rightarrow (\mu F A \Rightarrow R)

cata {F = F} \phi i \langle x \rangle = \phi i (bimap F id\Rightarrow (cata \phi) i x)
```


Special cases

```
Regular = Code_2 (Fin 0) (Fin 1) (Fin 1)

PolyP = Code_2 (Fin 1) (Fin 1) (Fin 1)

Multirec Ix = Code_2 (Fin 0) Ix Ix
```

Concluding remarks

- Playing with universes is easy and lots of fun.
- ▶ This is still just the beginning.
- Other GP approaches are more different from the ones presented here.
- Other things we can do in universes: abstraction, application, quantification, embedded isomorphisms.
- We should explore the relations between universes.
- Type-indexed datatypes just become other interpretations, or even functions from codes to codes.
- We can often automatically lift functions in one universe to functions in another.

Advertisement

- The view/universe described in the paper "A generic deriving mechanism for Haskell" have been implemented in GHC and will hopefully be in GHC 7.2.*.
- The mechanism is expressive enough to describe all but one of the currently derivable type classes in GHC.
- There will thus be "official" support for generic programming with a sum-of-products view in GHC.

