Expanding the Universe

Andres L6h
with lots of inspiration from
José Pedro Magalhaes and Conor McBride

®Well-Typed

23 May 2011

Why datatype-generic programming?

Motivation (old story):
» capture behaviour that depends on the structure of types;
» capture types that are depend on the structure of types;

avoid boilerplate,
only write the interesting parts of functions;

write code that is robust against changes in the datatypes.

v

v

®Well-Typed

Some DGP history

Haskell only, and incomplete

» PolyP (Jeuring and Jansson 1997)

» A new approach to generic FP (Hinze 1999)

» Derivable Type Classes (Hinze 2000)

» Generic Haskell (Hinze, Jeuring, Léh 2000-03)

» SYB ... (Lammel, Peyton Jones, Hinze, Oliveira, Léh 2003—-06)
» ...Generics for the Masses (Hinze, Oliveira, L6h 2004—06)
> RepLib (Weirich 2006)

» Regular (Noort, Rodriguez, Holdermans, Jeuring, Heeren 2008)
» Instant Generics (Chakravarty, Ditu, Leshchinskiy 2009)

» MultiRec (Rodriguez, Holdermans, Jeuring, L6h 2009)

» Generic deriving (Magalhaes, Dijkstra, Jeuring, L6h 2010)

®Well-Typed

Why so many approaches?

Many technical differences:

» Which Haskell constructs are used to encode certain
concepts.

» Mainly a language extension, or mainly a library.

®Well-Typed

Why so many approaches?

Many technical differences:

» Which Haskell constructs are used to encode certain
concepts.

» Mainly a language extension, or mainly a library.
Some conceptual differences:
» How are datatypes being viewed?

» The view dictates which generic functions can easily be
expressed and which not.

» The view also restricts the datatypes generic functions can
operate on.

®Well-Typed

Comparing DGP approaches

Several attempts have been made to categorize approaches:

» by view, representation mechanism, overloading
mechanism;

» by a large table of features.

®Well-Typed

Comparing DGP approaches

Several attempts have been made to categorize approaches:

» by view, representation mechanism, overloading
mechanism;

» by a large table of features.

There is surprisingly little work on formally comparing different
approaches.

®Well-Typed

Agda

Agda is a dependently typed programming language with
Haskell-inspired syntax.

Very suitable for generic programming:
» universe constructions (see soon);

» no syntactic difference between terms and types, thus
between generic functions and generic types;

» similarity with Haskell allows us to code in a similar style;
» we can prove properties of functions in Agda.

®Well-Typed

The (long-term) plan

v

Implement (model) many approaches to GP in Haskell
using Agda.

Relate the approaches in Agda, by means of Agda
functions and properties.

Gain more understanding of the approaches.

Fix remaining problems in Agda.

Either port back to Haskell, or enjoy using GP in Agda.

v

v

v

v

®Well-Typed

This talk

v

Look at regular, PolyP, multirec.
Model these approaches as universes in Agda.

Observe the similarities, and see how one extends the
other.

v

v

Generalize.

v

®Well-Typed

Universes

A type (Set) of codes:

data Code : Set where

An interpretation function taking codes to types:
[L] : Code — ... — Set

®Well-Typed

Universes
Example

Codes (a familiar type):

data N : Set where
zero : N
suc : N— N

®Well-Typed

Universes
Example

Codes (a familiar type):

data N : Set where
zero : N
suc : N— N

Interpretation:
Vec : N — Set — Set
Vec (zero)A =T -- the “unit” type

Vec (sucn)A = Ax VecnA --apair

We have defined “vectors” of a given type.

®Well-Typed

Universes

A “generic” function

sum : (n : N)—->VecnN— N
sum zero tt = zero
sum (suc n) (x,Xs) = X+ Sum n xs

®Well-Typed

Universes

A “generic” function

sum : (n : N)—->VecnN— N
sum zero tt = zero
sum (suc n) (x,Xs) = X+ Sum n xs

In general:

generic : (C : Code) - [C] — ...

We parameterize over the code, and then do something with its
interpretation.

®Well-Typed

Universes
Remarks

» Universes need not be unfamiliar types.

» One type of codes can admit several interpretations
(e.g. Vec and Fin).

» Interpretations can also be defined as datatypes.
» Codes and interpretation functions are first-class.

» So we can do other things with codes than to interpret
them; we can define generic functions over them, but also
transform them, extend them, restrict them etc.

®Well-Typed

A more interesting universe

data Cod

U
K
|

@

: Set where

: Code

: Set — Code
: Code

6b
_® _
: Code — Code — Code

Code — Code — Code
Code — Code — Code

®Well-Typed

A more interesting universe

data Code : Set where

U : Code
K : Set — Code
| : Code

_@® _ : Code — Code — Code
_® _ : Code — Code — Code
_©® _ : Code — Code — Code

[L] : Code — Set — Set

Y I X=T

[KA X =A

I [X = X

[F@® G]X = [F]Xw[G]X
[F® G]X =[[F]Xx[G]X
[Fe G]X =[F](G]X)

®Well-Typed

Encoding types

MaybeC : Code

MaybeC = U & |

Maybe : Set — Set

Maybe = [MaybeC |

nothing : {A : Set} — Maybe A
nothing = injq tt

just : {A : Set} - A — Maybe A
just = injo

SquareC : Code
SquareC = I ® |

Square : Set — Set
Square = [SquareC |

®Well-Typed

Example function: map

map : (F : Code) {AB : Set} —
(A—-B)—[FJ]A—]F]B

map U ftt =t

map (KA) fc =cC

map | fx = fx

map (F & G) f (inj; X) = inj; (map F f x)
map (F & G) f (injo x) = inj> (map G f x)
map (F ® G)f(x,y) = mapFfx,mapGfy
map (F ® G) fx = map F (map G f) x

®Well-Typed

Examples

testy : map MaybeC (A x — suc x) (just 7) = just 8
testy = refl

test, : map SquareC (A x — sucx) (2,3) =(3,4)
testo = refl

®Well-Typed

Examples

testy : map MaybeC (A x — suc x) (just 7) = just 8
testy = refl

test, : map SquareC (A x — sucx) (2,3) =(3,4)
testo = refl

Still, the universe isn’t particularly interesting, because we
cannot describe recursive structures.

®Well-Typed

Adding fixed points

data . (F : Code) : Set where
O [FI(wF)—puF

Nat : Set
Nat = p MaybeC
nzero : Nat

nzero = (nothing)

nsuc : Nat — Nat
nsucn = (justn)

®Well-Typed

Another datatype

Tree : Set
Tree = p (MaybeC ® SquareC)

leaf : Tree
leaf = (nothing)

node : Tree — Tree — Tree
nodelr = (just(l,r))

®Well-Typed

Generic recursion schemes

cata : {F : Code} {A : Set} - ([F]A—=A)—-uF—=A
cata {F} ¢ (x) = ¢ (map F (cata ¢) x)

®Well-Typed

Generic recursion schemes

cata : {F : Code} {A : Set} - ([F]A—=A)—-uF—=A
cata {F} ¢ (x) = ¢ (map F (cata ¢) x)

plus : Nat — Nat — Nat
plus m = cata [const m, nsuc]

reverse : Tree — Tree
reverse = cata [const leaf, uncurry node o swap]

®Well-Typed

Generic recursion schemes

cata : {F : Code} {A : Set} - ([F]A—=A)—-uF—=A
cata {F} ¢ (x) = ¢ (map F (cata ¢) x)

plus : Nat — Nat — Nat
plus m = cata [const m, nsuc]

reverse : Tree — Tree
reverse = cata [const leaf, uncurry node o swap]

[-,-] : {ABC : Set} - (A—-C)—-(B—-C)—» (AwB)—-C

®Well-Typed

More generic recursion schemes

ana : {F : Code} {A : Set} - (A—=[F]JA) -A—uF
ana{F} ¢ x = (mapF (anav) (¢ x))

®Well-Typed

Observations

» Almost exact match with the Haskell library regular.

» We still cannot encode recursive structures with
parameters.

» We also cannot encode mutually recursive structures.

®Well-Typed

From regular to PolyP

We move from codes of functors to codes of bifunctors.
data Code, : Set where

U : Codes
K : Set — Codes
Par : Codes
| : Codes

_@® _ : Code, — Code, — Code,
_® _ : Codes — Code, — Codes

» Instead of one variable, we have two.
» We ignore composition for now.

®Well-Typed

Interpretation

[_]2 : Code, — Set — Set — Set

[U Jo XY =T

[KA J2XY =A

[Par Ja XY =X

[Ja XY =Y

[F® G2XY =[FoXYW][G]2XY
[F® G2XY =[F2XYXx[G]2XY

®Well-Typed

Mapping

bimap : (F : Code;) {ABCD : Set} —
(A—-B)—»(C—-D)—=[F]oAC—[F].BD

bimap U fott =t
bimap (KA) fgc =c
bimap Par fgy = fy
bimap | fgx = gX

bimap (F & G) fg (inj; x) = inj; (bimap F f g x)
bimap (F & G) f g (inj2 x) = inj> (bimap G f g x)
bimap (F ® G)fg(x,y) = bimapFfgx,bimapGfgy

®Well-Typed

Fixed points

data . (F : Code,) (A : Set) : Set where
() [Fl2A(wFA)—=pFA

®Well-Typed

Fixed points

data . (F : Code,) (A : Set) : Set where
() [Fl2A(wFA)—=pFA

cata : {F : Code,} {AR : Set} —
([F]loAR—=R)—= (FA—R)
cata{F} ¢ (x) = ¢ (bimap F id (cata ¢) x)

®Well-Typed

Examples

List : Set — Set
List = u (U & (Par ® 1))

®Well-Typed

Examples

List : Set — Set
List = u (U & (Par ® 1))

nil : {A : Set} — List A

nil = (injy tt)

cons : {A: Set} - A— ListA — ListA
cons x xs = (injz (x,xs))

®Well-Typed

Examples

List : Set — Set
List = u (U & (Par ® 1))

nil : {A : Set} — List A

nil = (injy tt)

cons : {A: Set} - A— ListA — ListA
cons x xs = (injz (x,xs))

caselist : {AB : Set} — ListA—+B — (A — ListA—B)—B
caselList (injy tt) nc =n

caselist (injz (x,xs)) nc = cxxs

foldr : {AB : Set} - (A—-B —+B)—+B— ListA—B

foldrc n = cata [const n,uncurry c]

®Well-Typed

Other types
data Maybe a = Nothing | Justa -- Haskell

Maybe : Set — Set
Maybe = p (U & Par)

®Well-Typed

Other types
data Maybe a = Nothing | Justa -- Haskell

Maybe : Set — Set
Maybe = p (U & Par)

data Tree a = Leafa | Node (Tree a) (Tree a) -- Haskell

Tree : Set — Set
Tree = p(Par & (I ® 1))

®Well-Typed

Other types
data Maybe a = Nothing | Justa -- Haskell

Maybe : Set — Set
Maybe = p (U & Par)

data Tree a = Leafa | Node (Tree a) (Tree a) -- Haskell

Tree : Set — Set
Tree = p(Par & (I ® 1))

data Rose a = Fork a [Rose a]

Rose : Set — Set
Rose = p(Par ® {!'})

®Well-Typed

What about composition?

Extending the codes

data Code, : Set where

U
K
Par
|
6b
_® _
_© _ :

: Codes
: Set — Codes
: Codes
: Codes

Code, — Code, — Codes
Code, — Code, — Codes
Codes, — Code, — Codes

®Well-Typed

What about composition?

Extending the interpretation

mutual
[L] : Code, — Set — Set — Set
U IXY =T
[KA XY =A
[Par I XY =X
I] XY =Y

[F® G]XY = [FIXYw[G]XY
[F® G]XY = [FIXYx[G]XY
[F® G]XY = uF([G]XY)

d

ata ;, (F : Codey) (A : Set) : Set where
O [FIARFA) = uFA

We now have the actual PolyP universe.

®Well-Typed

From the PolyP library

mutual

bimap : (F : Code;) {ABCD : Set} —
(A—-B)—»(C—D)—=[F]J]AC—[F]BD

bimap U fgtt =
bimap (KA) fgc =
bimap Par fgy

bimap | fgx =
bimap (F & G) fg (inj; x) =
bimap (F & G) fg (injp x) =
bimap (F ® G)fg(x,y) =
bimap (F ® G)fgx =

tt

c

fy

g X

injy (bimap F f g x)

inj> (bimap G f g x)

bimap Ffg x,bimap Gfgy
pmap {F} (bimap G f g) x

pmap : {F : Codes} {AB : Set} —
(A—-B)—-uFA—-uFB
pmap {F} f(x) = (bimap Ff(pmap {F} f) x)

®Well-Typed

From the PolyP library

mutual
fsum : (F : Code;) > [F]NN— N
fsum U tt =
fsum (K A) c
fsum Par X =
X = X
(injy x) = fsum F x
(injoy) = fsumGy
(x,y) = fsumFx+fsumGy
X = psum {F} (pmap (fsum G) x)
psum : {F : Codes} - nFN— N
psum {F} = cata (fsum F)

I
X O O

®Well-Typed

From the PolyP library

mutual
fflatten : (F : Code,) {A : Set} —
[F] (List A) (List A) — List A

fflatten U tt =[]

fflatten (KA) ¢ =[]

fflatten Par X = X

fflatten | X = X

fflatten (F @ G) (inj; x) = fflatten F x

fflatten (F @& G) (inj2 x) = fflatten G x

fflatten (F ® G) (x,y) = fflatten Fx H fflatten Gy
fflatten (F ® G) x = concat (flatten {F}

(pmap (fflatten G) x))

flatten : {F : Codes} {A : Set} — uF A — ListA
flatten {F} (x) = fflatten F (bimap F [_] flatten x)

®Well-Typed

Limitations of PolyP

» No mutually recursive datatypes.
» No nested (or other forms of indexed) datatypes.

®Well-Typed

Limitations of PolyP

» No mutually recursive datatypes.
» No nested (or other forms of indexed) datatypes.

» As areaction, a large number of Haskell approaches
without fixed points were introduced.

» Translating this to Agda, it means that inductive types get
recursive (infinite) codes.

» We can model that with a coinductive type of codes (but
not in this talk).

®Well-Typed

Recap: regular

data Code :
: Code
: Set — Code
: Code

U
K
|

P :
®
© :

Set where

Code — Code — Code
Code — Code — Code
Code — Code — Code

®Well-Typed

Recap: regular

data Code : Set where

U : Code
K : Set — Code
| : Code

_® _ : Code — Code — Code
_® _ : Code — Code — Code
_©® _ : Code — Code — Code

[L] : Code — Set — Set

®Well-Typed

Recap: regular

data Code : Set where

U : Code
K : Set — Code
| : Code

_® _ : Code — Code — Code
_® _ : Code — Code — Code
_©® _ : Code — Code — Code

[L] : Code — Set — Set

data . (F : Code) : Set where
O [FI(wF)—pF

®Well-Typed

Recap: PolyP

data Code, : Set where

U : Code,
K : Set — Codes
Par : Codes
| : Codes

_@ _ : Codes — Codes, — Codes
_® _ : Code, — Code, — Codes

®Well-Typed

Recap: PolyP

data Code, : Set where

U : Code,
K : Set — Codes
Par : Codes
| : Codes

_@ _ : Codes — Codes, — Codes
_® _ : Code, — Code, — Codes

[L] : Code, — Set — Set — Set

®Well-Typed

Recap: PolyP

data Code, : Set where

U : Code,
K : Set — Codes
Par : Codes
| : Codes

_@ _ : Codes — Codes, — Codes
_® _ : Code, — Code, — Codes

[L] : Code, — Set — Set — Set

data . (F : Codey) (A : Set) : Set where
() [Fl2A(wFA)—=pFA

®Well-Typed

Mutually recursive datatypes

Can we define a universe that describes many functors at
once?

®Well-Typed

Mutually recursive datatypes

Can we define a universe that describes many functors at

once?

data Code (Ix : Set) : Set where
U : Code Ix
K : (A : Set) — Code Ix

| : Ix = Code Ix
_ @ _ : Code Ix — Code Ix — Code Ix
_® _ : Code Ix — Code Ix — Code Ix

®Well-Typed

Mutually recursive datatypes

Can we define a universe that describes many functors at

once?

data Code (Ix : Set) : Set where

U
K
|

: Code Ix

: (A : Set) — Code Ix
. Ix — Code Ix

6
®

Code Ix — Code Ix — Code Ix
Code Ix — Code Ix — Code Ix

: Ix = Code Ix

®Well-Typed

Interpretation

Indexed : Set — Set
Indexed Ix = Ix — Set

®Well-Typed

Interpretation

Indexed : Set — Set
Indexed Ix = Ix — Set

] : {Ix : Set} — Code Ix — Indexed Ix — Indexed Ix

]

[U | Xi =
[KA [Xi=
[1] | Xi =
I I Xi =
I I Xi =
[[—

[F]Xiw[G]Xi
[F]Xix[G]Xi

®Well-Typed

Example

>_ : {Ix : Set} — Code Ix — Ix — Code Ix
=F ®!i

®Well-Typed

Example

> : {lIx : Set} — Code Ix — Ix — Code Ix
Foi=F®!i

Haskell:

data Zero = ZA Zero Zero | ZB One One | ZC Zero
data One = OA Zero One | OB One Zero | OC One

Agda encoding without fixed point:

ZeroOneC : Code (Fin 2)
ZeroOneC (10 ®10) & (11
@ (11

= 11)
® (10 ® 11) (10

@ 10) >
0) @ 11

®
®) >

®Well-Typed

Map

— =3 _: {Ix : Set} — Indexed Ix — Indexed Ix — Set
R=S=(x:_)—=Rix—Six

®Well-Typed

Map

— =3 _: {Ix : Set} — Indexed Ix — Indexed Ix — Set
R=S=(x:_)—=Rix—Six

map : {Ix : Set} (F : Code Ix) - {R S : Indexed Ix} —
(R=S)—[F]R = [F]S

map U fi_ = tt

map (KX) fix = X

map (1)) fix = fjx

map (F & G) fi(inj; x) = inj; (map F fix)

map (F & G) fi(injpy) = injz (map Gfiy)

map (F ® G)fi(x,y) = mapFfix,mapGfiy
map (! j) fix = X

®Well-Typed

Fixed points

data ;. {Ix : Set} (F : Code Ix) (ix : Ix) : Set where
() [F](pF)ix — puFix

cata : {Ix : Set} {F : Code Ix} {R : Indexed Ix} —

(IFIR=R) = (rF = R)
cata{F = F} ¢ix (x) = ¢ix(map F (cata ¢) ix x)

®Well-Typed

Status

So far, we have seen:

» the regular universe: fixed points of functors
(no parameters, one recursive position)

» the PolyP universe: fixed points of bifunctors
(one parameter, one recursive position)

» the multirec universe: fixed points of indexed functors
(no parameters, several recursive positions)

®Well-Typed

Status

So far, we have seen:

» the regular universe: fixed points of functors
(no parameters, one recursive position)

» the PolyP universe: fixed points of bifunctors
(one parameter, one recursive position)

» the multirec universe: fixed points of indexed functors
(no parameters, several recursive positions)

» Can we also have many parameters?

®Well-Typed

Status

So far, we have seen:

» the regular universe: fixed points of functors
(no parameters, one recursive position)

» the PolyP universe: fixed points of bifunctors
(one parameter, one recursive position)

» the multirec universe: fixed points of indexed functors
(no parameters, several recursive positions)

» Can we also have many parameters?
Yes, by decoupling input from output positions.

®Well-Typed

Codes

data Code (Ix : Set) (Ox : Set) : Set where
U : Code Ix Ox
K : (A : Set) — Code Ix Ox
| . Ix — Code Ix Ox
_@ _ : Code Ix Ox — Code Ix Ox — Code Ix Ox
_® _ : Code Ix Ox — Code Ix Ox
@ : {Mx : Set} —
Code Mx Ox — Code Ix Mx — Code Ix Ox
! : Ox — Code Ix Ox

Composition becomes easier again.

®Well-Typed

Interpretation

Only the type changes.

] : {IxOx : Set} — Code Ix Ox — Indexed Ix — Indexed Ox
[U] Xi=T

[KA] Xi=A

1] Xi=X]

[Fee G]Xi=[F]Xiw[G]Xi

[F® G]Xi=[F]Xix[G]Xi

[Fe@ G]Xi=[F]J(G]X)i

I'il Xi=j=i

®Well-Typed

Map

Again, only the type changes:

map : {IxOx : Set} (F : Code Ix Ox) —
{RS :Indexed Ix} - (R = S)=[F]R = [F]S

map U fi_ =t

map (KX) fix = X

map (1) fix = fjx

map (F & G) fi(inj; x) = inj; (map F fix)

map (F & G)fi(injzy) = inj (map Gfiy)

map (F ® G)fi(x,y) = mapFfix,mapGfiy
map (F ® G) fix = map F (map G f)ix
map (! j) fix = X

®Well-Typed

Indexed Bifunctors

To distinguish parameter positions from recursive positions, let
us reintroduce bifunctors:

Code, : (IxJx Ox : Set) — Set
Code; Ix Jx Ox = Code (Ix & Jx) Ox

®Well-Typed

Indexed Bifunctors

To distinguish parameter positions from recursive positions, let
us reintroduce bifunctors:

Code, : (IxJx Ox : Set) — Set
Code; Ix Jx Ox = Code (Ix & Jx) Ox

[L]2 : {IxJxOx : Set} — Codes Ix Jx Ox —
Indexed Ix — Indexed Jx — Indexed Ox
[FJ2RS = [F][R,S]

®Well-Typed

Fixed points

data . {IxOx : Set} (F : Code, Ix Ox Ox)
(R : Indexed Ix) : Indexed Ox where
() - [Fl2R(rFR) = nFR

Compare with the PolyP version:

data . (F : Codey) (A : Set) : Set where
() [FloA(wFA)—=uFA

®Well-Typed

Fixed points in universe

Actually, the universe can be made closed under fixed points:
data Code (Ix : Set) (Ox : Set) : Set where

Fix : (F : Code, Ix Ox Ox) — Code Ix Ox

[FixF]Ri = uFRi

®Well-Typed

Catamorphism

cata : {IxOx : Set} {F : Code; Ix Ox Ox}
{A : Indexed Ix} {R : Indexed Ox} —
(IFl2AR = R)—» (tFA = R)

cata{F = F} ¢i(x) = ¢i(bimap Fid— (cata ¢) i x)

®Well-Typed

Special cases

Regular = Code, (Fin 0) (Fin 1) (Fin 1)
PolyP = Code; (Fin 1) (Fin 1) (Fin 1)
Multirec Ix = Code; (Fin 0) Ix Ix

®Well-Typed

Concluding remarks

» Playing with universes is easy and lots of fun.
» This is still just the beginning.

» Other GP approaches are more different from the ones
presented here.

» Other things we can do in universes: abstraction,
application, quantification, embedded isomorphisms.

» We should explore the relations between universes.

» Type-indexed datatypes just become other interpretations,
or even functions from codes to codes.

» We can often automatically lift functions in one universe to
functions in another.

®Well-Typed

Advertisement

» The view/universe described in the paper “A generic
deriving mechanism for Haskell” have been implemented
in GHC and will hopefully be in GHC 7.2.*.

» The mechanism is expressive enough to describe all but
one of the currently derivable type classes in GHC.

» There will thus be “official” support for generic
programming with a sum-of-products view in GHC.

®Well-Typed

