

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Terminating combinator parsers in Agda Andres Löh

based on work by Nils Anders Danielsson and Ulf Norell

Department of Information and Computing Sciences Utrecht University

June 12, 2008

Overview

Totality

Parser combinators

Terminating combinator parsers

Universiteit Utrecht

Totality

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] イロトイクトイミトイミト ミーのへで

3

A function is called **total** if it terminates and produces a valid $(non-\perp)$ result for any input.

Universiteit Utrecht

A function is called **total** if it terminates and produces a valid $(non-\perp)$ result for any input.

Many Haskell functions are not total:

Universiteit Utrecht

A function is called **total** if it terminates and produces a valid (non- \perp) result for any input.

Many Haskell functions are not total:

```
head :: [a] \rightarrow a
head (x : xs) = x
```

Fails on the empty list.

Universiteit Utrecht

A function is called **total** if it terminates and produces a valid $(non-\perp)$ result for any input.

Many Haskell functions are not total:

```
head :: [a] \rightarrow a
head (x : xs) = x
```

Fails on the empty list.

```
factorial :: Int \rightarrow Int
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

Loops on any negative input.

Universiteit Utrecht

▶ All Agda functions are supposed to be total.

Universiteit Utrecht

- ▶ All Agda functions are supposed to be total.
- Writing a function that the compiler cannot easily see to be terminating results in a compiler error.

Universiteit Utrecht

- ► All Agda functions are supposed to be total.
- Writing a function that the compiler cannot easily see to be terminating results in a compiler warning.

Universiteit Utrecht

- All Agda functions are supposed to be total.
- Writing a function that the compiler cannot easily see to be terminating results in a compiler warning.
- Other dependently typed systems (Epigram, Coq) are similar in this respect.

Universiteit Utrecht

- All Agda functions are supposed to be total.
- Writing a function that the compiler cannot easily see to be terminating results in a compiler warning.
- Other dependently typed systems (Epigram, Coq) are similar in this respect.

Why?

Universiteit Utrecht

Reasons for totality

In Haskell, every type is inhabited: ⊥ is a value of any type.

Universiteit Utrecht

Reasons for totality

- In Haskell, every type is inhabited: ⊥ is a value of any type.
- In dependently typed languages, we want to use the Curry-Howard correspondence: types are propositions, values are proofs.

 $\begin{array}{l} \mbox{data } _ \leqslant _ : \mathbb{N} \to \mathbb{N} \to \mbox{Set where} \\ \leqslant \mbox{base } : \forall \{n\} \to n \leqslant n \\ \leqslant \mbox{step } : \forall \{m \ n\} \to m \leqslant n \to m \leqslant \mbox{suc } n \\ \mbox{trans } : \forall \{l \ m \ n\} \to l \leqslant m \to m \leqslant n \to l \leqslant n \\ \mbox{replaceInits } : \forall \{a \ m \ n\} \to m \leqslant n \to Vec \ a \ n \\ \end{trans} \end{array}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロン 人間 マイヨン トロークタイ

Reasons for totality

- In Haskell, every type is inhabited: ⊥ is a value of any type.
- In dependently typed languages, we want to use the Curry-Howard correspondence: types are propositions, values are proofs.

 $\begin{array}{l} \mbox{data } _ \leqslant _ : \mathbb{N} \to \mathbb{N} \to \mbox{Set where} \\ \leqslant \mbox{base } : \forall \{n\} \to n \leqslant n \\ \leqslant \mbox{step } : \forall \{m \ n\} \to m \leqslant n \to m \leqslant \mbox{suc } n \\ \mbox{trans } : \forall \{l \ m \ n\} \to l \leqslant m \to m \leqslant n \to l \leqslant n \\ \mbox{replaceInits } : \forall \{a \ m \ n\} \to m \leqslant n \to Vec \ a \ n \\ \mbox{Vec } a \ m \to Vec \ a \ n \end{array}$

Haskell is inconsistent: all propositions can be proved.

Universiteit Utrecht

Reasons for totality – contd.

Types can contain terms:

$$\begin{array}{l} \mathsf{Vec}:\mathsf{Set}\to\mathbb{N}\to\mathsf{Set}\\ _\#_:\forall\{\mathsf{a}\ m\ n\}\to\mathsf{Vec}\ \mathsf{a}\ m\to\mathsf{Vec}\ \mathsf{a}\ n\to\mathsf{Vec}\ \mathsf{a}\ (m+n)\\ \mathsf{tail}\quad:\forall\{\mathsf{a}\ n\}\to\mathsf{Vec}\ \mathsf{a}\ (suc\ n)\to\mathsf{Vec}\ \mathsf{a}\ n\end{array}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

7

Reasons for totality – contd.

Types can contain terms:

$$\begin{array}{l} {\sf Vec}:{\sf Set} \to \mathbb{N} \to {\sf Set} \\ _ + _ : \forall \{ {\sf a} \mbox{ } n \, \} \to {\sf Vec} \mbox{ } {\sf a} \mbox{ } m \to {\sf Vec} \mbox{ } {\sf a} \mbox{ } m \to {\sf Vec} \mbox{ } {\sf a} \mbox{ } (m+n) \\ {\sf tail} \quad : \forall \{ {\sf a} \mbox{ } n \, \} \mbox{ } \to {\sf Vec} \mbox{ } {\sf a} \mbox{ } n) \to {\sf Vec} \mbox{ } {\sf a} \mbox{ } n \end{array}$$

► Consider:

tail $(v_1 + v_2)$

Universiteit Utrecht

Reasons for totality – contd.

Types can contain terms:

► Consider:

 $\mathsf{tail}\;(\mathsf{v}_1+\mathsf{v}_2)$

Typechecking the expression requires unification:

```
(\text{length } v_1 + \text{length } v_2) \sim \text{suc } n
```

(for any n).

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

(日)

Consequences of totality

- Inductively defined datatypes have only finite values.
- Evaluation strategy (eager vs. lazy) is semantically irrelevant.
- The language cannot be Turing-complete (but still surprisingly expressive).

Universiteit Utrecht

How to ensure totality

- Agda has a built-in coverage and termination checker.
- The coverage checker ensures that in a case analysis, all possible patterns are covered.
- The termination checker essentially checks that functions are structurally recursive.

Universiteit Utrecht

Structural recursion

Each value essentially is a constructor applied to other values:

$$v=C \; v_1 \dots v_n$$

 All such subvalues (and their subvalues ...) are structurally smaller. Recursive calls must make at least one argument structurally smaller.

[Faculty of Science Information and Computing Sciences]

(日)

Structural recursion

Each value essentially is a constructor applied to other values:

$$v=C \; v_1 \dots v_n$$

- All such subvalues (and their subvalues ...) are structurally smaller. Recursive calls must make at least one argument structurally smaller.
- Many functions are trivially structurally recursive:

```
 \begin{array}{l} \mathsf{length}: \forall \{\mathsf{a}\} \to [\mathsf{a}] \to \mathbb{N} \\ \mathsf{length}\left[\right] &= 0 \\ \mathsf{length}\left(\mathsf{x}::\mathsf{xs}\right) = 1 + \mathsf{length}\;\mathsf{xs} \end{array}
```

Others (e.g. Quicksort) require some work

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Parser combinators

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] イロトイ合トイミトイミト ミーのへで

11

Simple parsers

We can do better, but for this talk, we choose a näive implementation (list of successes):

```
\begin{array}{l} \mathsf{Input}:\mathsf{Set}\\ \mathsf{Input}=[\mathsf{Char}]\\ \mathsf{Parser}:\mathsf{Set}\to\mathsf{Set}\\ \mathsf{Parser}\;\mathsf{r}=\mathsf{Input}\to[\mathsf{r}\times\mathsf{Input}] \end{array}
```


Universiteit Utrecht

Applicative interface

```
\begin{array}{l} \mbox{fail}:\forall \{r\} \rightarrow \mbox{Parser } r \\ \mbox{fail inp} = [] \\ \mbox{succeed}:\forall \{r\} \rightarrow r \rightarrow \mbox{Parser } r \\ \mbox{succeed} x \mbox{ inp} = (x, \mbox{inp}) ::[] \end{array}
```


Universiteit Utrecht

Applicative interface

```
 \begin{array}{l} \mbox{fail}: \forall \{r\} \rightarrow \mbox{Parser } r \\ \mbox{fail inp} = [] \\ \mbox{succeed}: \forall \{r\} \rightarrow r \rightarrow \mbox{Parser } r \\ \mbox{succeed} \times \mbox{inp} = (x, \mbox{inp}) :: [] \\ \\ \mbox{-} \iota \_ : \forall \{r\} \rightarrow \mbox{Parser } r \rightarrow \mbox{Parser } r \rightarrow \mbox{Parser } r \\ \mbox{(p+q) inp} = p \mbox{ inp} \# q \mbox{ inp} \end{array}
```


Universiteit Utrecht

Applicative interface

```
 \begin{aligned} & \text{fail}: \forall \{r\} \rightarrow \text{Parser } r \\ & \text{fail inp} = [] \\ & \text{succeed}: \forall \{r\} \rightarrow r \rightarrow \text{Parser } r \\ & \text{succeed } x \text{ inp} = (x, \text{inp}) :: [] \\ & \_`` \_: \forall \{r\} \rightarrow \text{Parser } r \rightarrow \text{Parser } r \rightarrow \text{Parser } r \\ & (p \mid q) \text{ inp} = p \text{ inp} \# q \text{ inp} \\ & \_` ★ \_: \forall \{r \ s\} \rightarrow \text{Parser } (r \rightarrow s) \rightarrow \text{Parser } r \rightarrow \text{Parser } s \\ & (p \star q) \text{ inp} = \\ & \text{concat } (\text{map } (\lambda f \rightarrow \text{map } (\lambda g \rightarrow ((\pi_1 \ f) \ (\pi_1 \ g), \pi_2 \ g)) \\ & (q \ (\pi_2 \ f))) \\ & (p \text{ inp})) \end{aligned} 
                                                                                                                                                                                                                 (p inp))
```

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本・日本

Applicative interface – contd.

```
\begin{array}{l} \mathsf{symbol}:\mathsf{Char}\to\mathsf{Parser}\;\mathsf{Char}\\ \mathsf{symbol}\_[]&=[]\\ \mathsf{symbol}\;x\;(\mathsf{i}::\mathsf{inp})=\mathsf{if}\;\mathsf{i}=:x\;\mathsf{then}\;[x,\mathsf{inp}]\;\mathsf{else}\;[]\\ \_\$\_:\forall\{\mathsf{r}\;\mathsf{s}\}\to(\mathsf{r}\to\mathsf{s})\to\mathsf{Parser}\;\mathsf{r}\to\mathsf{Parser}\;\mathsf{s}\\ \mathsf{f}\$\;\mathsf{p}=\mathsf{succeed}\;\mathsf{f}\star\mathsf{p} \end{array}
```


Universiteit Utrecht

Applicative interface – contd.

```
\begin{array}{l} \mathsf{symbol}:\mathsf{Char}\to\mathsf{Parser}\;\mathsf{Char}\\ \mathsf{symbol}\_[]&=[]\\ \mathsf{symbol}\;x\;(\mathsf{i}::\mathsf{inp})=\mathsf{if}\;\mathsf{i}=:x\;\mathsf{then}\;[x,\mathsf{inp}]\;\mathsf{else}\;[]\\ \_\$\_:\forall\{\mathsf{r}\;\mathsf{s}\}\to(\mathsf{r}\to\mathsf{s})\to\mathsf{Parser}\;\mathsf{r}\to\mathsf{Parser}\;\mathsf{s}\\ \mathsf{f}\$\;p=\mathsf{succeed}\;\mathsf{f}\star p \end{array}
```

 The combinators are not recursive and thus accepted as total functions by Agda.

Universiteit Utrecht

Applicative interface – contd.

```
\begin{array}{l} \mathsf{symbol}:\mathsf{Char}\to\mathsf{Parser}\;\mathsf{Char}\\ \mathsf{symbol}\_[]&=[]\\ \mathsf{symbol}\;x\;(\mathsf{i}::\mathsf{inp})=\mathsf{if}\;\mathsf{i}=:x\;\mathsf{then}\;[x,\mathsf{inp}]\;\mathsf{else}\;[]\\ \_\$\_:\forall\{\mathsf{r}\;\mathsf{s}\}\to(\mathsf{r}\to\mathsf{s})\to\mathsf{Parser}\;\mathsf{r}\to\mathsf{Parser}\;\mathsf{s}\\ \mathsf{f}\$\;\mathsf{p}=\mathsf{succeed}\;\mathsf{f}\star\mathsf{p} \end{array}
```

- The combinators are not recursive and thus accepted as total functions by Agda.
- However, nearly all interesting grammars are cyclic, and the resulting combinator parsers recursive:

```
sum : Parser \mathbb{N}

sum = (\lambda m \_ n \rightarrow m + n) $ nat * symbol '+' * sum

\mid nat
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

・ロト・日本・日本・日本・日本・日本・日本

Not all parsers terminate

```
\begin{array}{l} \mathsf{nat}:\mathsf{Parser}\ \mathbb{N}\\ \mathsf{nat}=(\lambda\mathsf{n}\ \mathsf{d}\to\mathsf{n}\ast10+\mathsf{d})\ \$\ \mathsf{nat}\star\mathsf{digit}\\ \quad \  \  \, \mathsf{ligit} \end{array}
```


Universiteit Utrecht

Not all parsers terminate

```
nat : Parser \mathbb{N}
nat = (\lambda n d \rightarrow n * 10 + d) $ nat * digit
+ digit
\begin{array}{l} many: \forall \{a\} \rightarrow Parser \ a \rightarrow Parser \ [a]\\ many \ p = \_ :: \_ \$ \ p \star many \ p\\ \quad \mid \ succeed \ []\\ optx: Parser \ Char\\ optx = symbol \ 'x \ \mid \ succeed \ ' \ '\\ optxs: Parser \ [Char]\\ optxs = many \ optx \end{array}
```


Universiteit Utrecht

The rest of this talk

- We will design parser combinators so that the resulting parsers are structurally recursive.
- Left-recursive grammars (directly and indirectly) will be type-incorrect in this library.

[Faculty of Science Information and Computing Sciences]

(日)

Terminating combinator parsers

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

17

The main idea

- Look at the following graph: nodes are parsers, an edge from one node to another indicates that a parser can directly call another (without first consuming a symbol).
- For left-recursive grammars (directly or indirectly), the graph contains cycles.
- For other grammars, the graph is cycle-free, and can be expanded into a finite tree.
- If we make this tree an index of the parser type, then left-recursive parsers are no longer type-correct.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Dependency tree

 $\begin{array}{ll} \textbf{data} \ \mbox{Corners}: \mbox{Set where} \\ \mbox{leaf} & : \mbox{Corners} \\ \mbox{node}_1: \mbox{Corners} \rightarrow \mbox{Corners} \\ \mbox{node}_2: \mbox{Corners} \rightarrow \mbox{Corners} \rightarrow \mbox{Corners} \\ \mbox{Parser}: \mbox{Corners} \rightarrow \mbox{Set} \rightarrow \mbox{Set} \end{array}$

Universiteit Utrecht

Dependency tree

```
data Corners : Set where
leaf : Corners
node<sub>1</sub> : Corners \rightarrow Corners
node<sub>2</sub> : Corners \rightarrow Corners \rightarrow Corners
Parser : Corners \rightarrow Set \rightarrow Set
```

```
\begin{array}{l} \mathsf{symbol} : \mathsf{Char} \to \mathsf{Parser} \ \mathsf{leaf} \ \mathsf{Char} \\ \mathsf{succeed} : \forall \{r\} \to \mathsf{r} \to \mathsf{Parser} \ \mathsf{leaf} \ \mathsf{r} \\ \_ ! \_ : \forall \{r\} \to \mathsf{Parser} \ \mathsf{c}_1 \ \mathsf{r} \to \mathsf{Parser} \ \mathsf{c}_2 \ \mathsf{r} \to \\ & \mathsf{Parser} \ (\mathsf{node}_2 \ \mathsf{c}_1 \ \mathsf{c}_2) \ \mathsf{r} \\ \_ \star \_ : \forall \{r \ \mathsf{s}\} \to \mathsf{Parser} \ \mathsf{c}_1 \ (\mathsf{r} \to \mathsf{s}) \to \mathsf{Parser} \ \mathsf{c}_2 \ \mathsf{r} \to \\ & \mathsf{Parser} \ ? \ \mathsf{s} \end{array}
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

It is important to know if a parser accepts the empty word:

```
\begin{array}{l} \mathsf{Empty}:\mathsf{Set}\\ \mathsf{Empty}=\mathsf{Bool}\\ \mathsf{Parser}:(\mathsf{Empty}\times\mathsf{Corners})\to\mathsf{Set}\to\mathsf{Set} \end{array}
```


Universiteit Utrecht

It is important to know if a parser accepts the empty word:

```
\begin{array}{l} \mathsf{Empty}:\mathsf{Set}\\ \mathsf{Empty}=\mathsf{Bool}\\ \mathsf{Parser}:(\mathsf{Empty}\times\mathsf{Corners})\to\mathsf{Set}\to\mathsf{Set} \end{array}
```

```
\mathsf{symbol} \ : \mathsf{Char} \to \mathsf{Parser} \ (\mathsf{false}, \mathsf{leaf}) \ \mathsf{Char}
```


Universiteit Utrecht

It is important to know if a parser accepts the empty word:

```
\begin{array}{l} \mathsf{Empty}:\mathsf{Set}\\ \mathsf{Empty}=\mathsf{Bool}\\ \mathsf{Parser}:(\mathsf{Empty}\times\mathsf{Corners})\to\mathsf{Set}\to\mathsf{Set} \end{array}
```

```
\begin{array}{l} \mathsf{symbol} \ : \mathsf{Char} \to \mathsf{Parser} \ (\mathsf{false}, \mathsf{leaf}) \ \mathsf{Char} \\ \mathsf{succeed} : \forall \{\mathsf{r}\} \to \mathsf{r} \to \mathsf{Parser} \ (\mathsf{true}, \mathsf{leaf}) \ \mathsf{r} \end{array}
```


Universiteit Utrecht

It is important to know if a parser accepts the empty word:

```
 \begin{array}{l} \mathsf{Empty}:\mathsf{Set}\\ \mathsf{Empty}=\mathsf{Bool}\\ \mathsf{Parser}:(\mathsf{Empty}\times\mathsf{Corners})\to\mathsf{Set}\to\mathsf{Set}\\ \end{array} \\ \begin{array}{l} \mathsf{symbol}:\mathsf{Char}\to\mathsf{Parser}\ (\mathsf{false},\mathsf{leaf})\ \mathsf{Char}\\ \mathsf{succeed}:\forall\{\mathsf{r}\}\to\mathsf{r}\to\mathsf{Parser}\ (\mathsf{true},\mathsf{leaf})\ \mathsf{r}\\ \_^{-1}\_ &:\forall\{\mathsf{e_1}\ c_1\ e_2\ c_2\ r\}\to\\ & \mathsf{Parser}\ (\mathsf{e_1},\mathsf{c_1})\ \mathsf{r}\to\mathsf{Parser}\ (\mathsf{e_1},\mathsf{c_2})\ \mathsf{r}\to\\ & \mathsf{Parser}\ (\mathsf{e_1}\vee\mathsf{e_2},\mathsf{node_2}\ c_1\ c_2)\ \mathsf{r} \end{array}
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

It is important to know if a parser accepts the empty word:

```
\begin{array}{l} \mathsf{Empty}:\mathsf{Set}\\ \mathsf{Empty}=\mathsf{Bool}\\ \mathsf{Parser}:(\mathsf{Empty}\times\mathsf{Corners})\to\mathsf{Set}\to\mathsf{Set} \end{array}
\begin{array}{c} \mathsf{symbol} : \mathsf{Char} \to \mathsf{Parser} \; (\mathsf{false}, \mathsf{leaf}) \; \mathsf{Char} \\ \mathsf{succeed} : \forall \{\mathsf{r}\} \to \mathsf{r} \to \mathsf{Parser} \; (\mathsf{true}, \mathsf{leaf}) \; \mathsf{r} \\ \_ \vdash \_ \; : \forall \{\mathsf{e}_1 \; \mathsf{c}_1 \; \mathsf{e}_2 \; \mathsf{c}_2 \; \mathsf{r}\} \to \\ & \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_1) \; \mathsf{r} \to \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_2) \; \mathsf{r} \to \\ & \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_1) \; \mathsf{r} \to \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_2) \; \mathsf{r} \to \\ & \mathsf{Parser} \; (\mathsf{e}_1 \lor \mathsf{e}_2, \mathsf{node}_2 \; \mathsf{c}_1 \; \mathsf{c}_2) \; \mathsf{r} \to \\ & \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_1) \; (\mathsf{r} \to \mathsf{s}) \to \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_2) \; \mathsf{r} \to \\ & \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_1) \; (\mathsf{r} \to \mathsf{s}) \to \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_2) \; \mathsf{r} \to \\ & \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_1) \; (\mathsf{r} \to \mathsf{s}) \to \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_2) \; \mathsf{r} \to \\ & \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_2) \; \mathsf{r} \to \mathsf{Parser} \; (\mathsf{e}_1, \mathsf{c}_2) \; \mathsf{r} \to \\ & \mathsf{Parser} \; (\mathsf{e}_2 \land \mathsf{s}_2 \; \mathsf{s}_2) \to \mathsf{Parser} \; \mathsf{e}_3 \; \mathsf{s} \to \mathsf{Parser} \; \mathsf{s} \to \mathsf{s} \to \mathsf{Parser} \; \mathsf{s} \to 
                                                                                                                                                                                                                                                                                                                                                    Parser (e_1 \land e_2, if e_1 then node<sub>2</sub> c_1 c_2 else c_1) s
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Not done

What about

 $\begin{array}{l} \mathsf{Parser}:(\mathsf{Empty}\times\mathsf{Corners})\to\mathsf{Set}\to\mathsf{Set}\\ \mathsf{If, as before}\\ \mathsf{Parser}_{-}\mathsf{r}=\mathsf{Input}\to[\mathsf{r}\times\mathsf{Input}] \end{array}$

then the index information is lost!

Universiteit Utrecht

Not done

What about

Parser : (Empty \times Corners) \rightarrow Set \rightarrow Set If, as before $\mathsf{Parser} \ _\mathsf{r} = \mathsf{Input} \to [\mathsf{r} \times \mathsf{Input}]$ then the index information is lost! We have to turn Parser into an abstract datatype: **data** Parser : (Empty × Corners) \rightarrow Set \rightarrow Set where

Universiteit Utrecht

Not done – contd.

- Recursive definitions still pose a problem.
- Does not pass the termination checker, but still type-correct:

```
p: Parser (true, leaf) Char 
p = p
```


Universiteit Utrecht

Not done – contd.

- Recursive definitions still pose a problem.
- Does not pass the termination checker, but still type-correct:

```
\begin{array}{l} p: \mathsf{Parser} \ (\mathsf{true}, \mathsf{leaf}) \ \mathsf{Char} \\ p = p \end{array}
```

Recursion must change the Corners tree!

```
\begin{array}{c} !\_: \forall \{ e \ c \ r \} \rightarrow \\ \mathsf{Parser} \ (e,c) \ r \rightarrow \mathsf{Parser} \ (e,\mathsf{node_1} \ c) \ r \end{array}
```

Recursion via ! fails the "occurs check":

$$\mathsf{p} = !\mathsf{p}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

< 日 > < 目 > < 目 > < 目 > < 日 > < 日 > < 日 > < 0 < 0

Not done – contd.

Legal cyclic definitions are still far from structurally recursive:

 $p: Parser \dots$ $p = \dots p \dots$

- ▶ Turn parsers (thus Corners) into function arguments.
- This unfortunately has quite a few implications: we turn parser combinators and also the nonterminals of grammars into datatypes, so that we can perform case analysis in a function.

Universiteit Utrecht

Abstract parsers

 $\mathsf{ParserType} = (\mathsf{Empty} \times \mathsf{Corners}) \to \mathsf{Set} \to \mathsf{Set}_1$

```
\begin{array}{l} \mbox{data Parser (nt : ParserType) : ParserType where} \\ !\_ : \forall \{e \ c \ r\} \rightarrow \\ & nt \ (e, c) \ r \rightarrow Parser \ nt \ (e, node_1 \ c) \ r \\ symbol : Char \rightarrow Parser \ nt \ (false, leaf) \ Char \\ return \ : \forall \{r\} \rightarrow r \rightarrow Parser \ nt \ (true, leaf) \ r \\ & \cdots \end{array}
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Grammars

```
\begin{array}{l} \mathsf{Grammar}:\mathsf{ParserType}\to\mathsf{Set}_1\\ \mathsf{Grammar}\ \mathsf{nt}=\forall\{\mathsf{e}\ \mathsf{c}\ \mathsf{r}\}\to\mathsf{nt}\ (\mathsf{e},\mathsf{c})\ \mathsf{r}\to\mathsf{Parser}\ \mathsf{nt}\ (\mathsf{e},\mathsf{c})\ \mathsf{r}\end{array}
```

```
\begin{array}{l} \mbox{data NT : ParserType where} \\ nat : NT (_-, _) \mathbb{N} & -- \mbox{ indices can be inferred!} \\ sum : NT (_-, _) \mathbb{N} \\ \mbox{grammar : Grammar NT} \\ \mbox{grammar nat} & = (\mbox{const } 1) \$ \mbox{sym '1'} & -- \mbox{simplified} \\ \mbox{grammar sum} & = (\lambda m \_ n \to m + n) \$ \mbox{!nat} \star \mbox{symbol '+'} \star \mbox{!sum} \\ & + \mbox{! nat} \end{array}
```


Grammars

```
\begin{array}{l} \mathsf{Grammar}:\mathsf{ParserType}\to\mathsf{Set}_1\\ \mathsf{Grammar}\ \mathsf{nt}=\forall\{\mathsf{e}\ \mathsf{c}\ \mathsf{r}\}\to\mathsf{nt}\ (\mathsf{e},\mathsf{c})\ \mathsf{r}\to\mathsf{Parser}\ \mathsf{nt}\ (\mathsf{e},\mathsf{c})\ \mathsf{r}\end{array}
```

The definition of grammar is type correct if no left-recursion is involved. It is no longer recursive.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト イポト イヨト イヨト シ の へ の

```
\begin{array}{l} \mathsf{parse}: \{\mathsf{nt}:\mathsf{ParserType}\}(\mathsf{g}:\mathsf{Grammar}\;\mathsf{nt})\\ \{\mathsf{e}:\mathsf{Empty}\}\{\mathsf{c}:\mathsf{Corners}\}\{\mathsf{r}:\mathsf{Set}\}\rightarrow\\ \mathsf{Parser}\;\mathsf{nt}\;(\mathsf{e},\mathsf{c})\;\mathsf{r}\rightarrow\\ \mathsf{LoS}.\mathsf{Parser}\;\mathsf{r}\quad-\text{original parser type}\\ \mathsf{parse}\;\mathsf{g}\;(!\mathsf{p}) &=\mathsf{parse}\;\mathsf{g}\;(\mathsf{g}\;\mathsf{p})\\ \mathsf{parse}\;\mathsf{g}\;(symbol\;\mathsf{c}) = \mathsf{LoS}.symbol\;\mathsf{c}\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 + \mathsf{p}_2) &= \mathsf{LoS}.\_+\_\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2)\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 \star \mathsf{p}_2) &= \mathsf{LoS}.\_\star\_\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2)\\ \end{array}
```


[Faculty of Science Information and Computing Sciences]

イロト イポト イヨト イヨト シ の へ の

```
\begin{array}{l} \mathsf{parse}: \{\mathsf{nt}:\mathsf{ParserType}\}(\mathsf{g}:\mathsf{Grammar}\;\mathsf{nt})\\ \{\mathsf{e}:\mathsf{Empty}\}\{\mathsf{c}:\mathsf{Corners}\}\{\mathsf{r}:\mathsf{Set}\}\rightarrow\\ \mathsf{Parser}\;\mathsf{nt}\;(\mathsf{e},\mathsf{c})\;\mathsf{r}\rightarrow\\ \mathsf{LoS}.\mathsf{Parser}\;\mathsf{r}\quad-\text{original parser type}\\ \mathsf{parse}\;\mathsf{g}\;(!\mathsf{p}) &=\mathsf{parse}\;\mathsf{g}\;(\mathsf{g}\;\mathsf{p})\\ \mathsf{parse}\;\mathsf{g}\;(symbol\;\mathsf{c}) = \mathsf{LoS}.symbol\;\mathsf{c}\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 + \mathsf{p}_2) &= \mathsf{LoS}.\_+\_\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2)\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 \star \mathsf{p}_2) &= \mathsf{LoS}.\_\star\_\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2)\\ \end{array}
```

Is this definition structurally recursive?

Universiteit Utrecht

```
\begin{array}{l} \mathsf{parse}: \{\mathsf{nt}:\mathsf{ParserType}\}(\mathsf{g}:\mathsf{Grammar}\;\mathsf{nt})\\ \{\mathsf{e}:\mathsf{Empty}\}\{\mathsf{c}:\mathsf{Corners}\}\{\mathsf{r}:\mathsf{Set}\}\rightarrow\\ \mathsf{Parser}\;\mathsf{nt}\;(\mathsf{e},\mathsf{c})\;\mathsf{r}\rightarrow\\ \mathsf{LoS}.\mathsf{Parser}\;\mathsf{r}\quad\mathsf{--}\;\mathsf{original}\;\mathsf{parser}\;\mathsf{type}\\ \mathsf{parse}\;\mathsf{g}\;(!\mathsf{p}) &=\mathsf{parse}\;\mathsf{g}\;(\mathsf{g}\;\mathsf{p})\\ \mathsf{parse}\;\mathsf{g}\;(symbol\;\mathsf{c}) = \mathsf{LoS}.symbol\;\mathsf{c}\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 + \mathsf{p}_2) &=\mathsf{LoS}.\_+\_}\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2)\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 \star \mathsf{p}_2) &=\mathsf{LoS}.\_\star\_}\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2)\\ \end{array}
```

Is this definition structurally recursive?

Universiteit Utrecht

```
\begin{array}{l} \mathsf{parse}: \{\mathsf{nt}:\mathsf{ParserType}\}(\mathsf{g}:\mathsf{Grammar}\;\mathsf{nt})\\ \{\mathsf{e}:\mathsf{Empty}\}\{\mathsf{c}:\mathsf{Corners}\}\{\mathsf{r}:\mathsf{Set}\}\rightarrow\\ \mathsf{Parser}\;\mathsf{nt}\;(\mathsf{e},\mathsf{c})\;\mathsf{r}\rightarrow\\ \mathsf{LoS}.\mathsf{Parser}\;\mathsf{r}\quad-\text{original parser type}\\ \mathsf{parse}\;\mathsf{g}\;(!\mathsf{p}) &=\mathsf{parse}\;\mathsf{g}\;(\mathsf{g}\;\mathsf{p})\\ \mathsf{parse}\;\mathsf{g}\;(symbol\;\mathsf{c}) = \mathsf{LoS}.symbol\;\mathsf{c}\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 + \mathsf{p}_2) &=\mathsf{LoS}.\_+\_\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2)\\ \mathsf{parse}\;\mathsf{g}\;(\mathsf{p}_1 \star \mathsf{p}_2) &=\mathsf{LoS}.\_+\_\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{p}_2) \end{array}
```

Is this definition structurally recursive?

No, in the ! case, the structure of the parser can get larger; in the \star case, p_2 can have a large Corners tree.

Universiteit Utrecht

A final refinement

We refine the Input type to keep an upper bound of the length of the input string:

```
\begin{array}{l} \mathsf{Input}:\mathbb{N}\to\mathsf{Set}\\ \mathsf{Input}\ n=\mathsf{BoundedVec}\ \mathsf{Char}\ n\\ \mathsf{Parser}:\mathbb{N}\to\mathbb{N}\to\mathsf{Set}\to\mathsf{Set}\\ \mathsf{Parser}\ m\ n\ r=\mathsf{Input}\ m\to[r\times\mathsf{Input}\ n] \end{array}
```


Universiteit Utrecht

```
parse: \{nt: ParserType\}(g: Grammar nt)
        (n:\mathbb{N}){e: Empty}{c: Corners}{r: Set} \rightarrow
        Parser nt (e, c) r \rightarrow
        LoS.Parser n (if e then n else pred n) r
                                                                 Faculty of Science
Universiteit Utrecht
                                                   Information and Computing Sciences]
```

```
\begin{array}{l} \mathsf{parse}: \{\mathsf{nt}:\mathsf{ParserType}\}(\mathsf{g}:\mathsf{Grammar}\;\mathsf{nt})\\ (\mathsf{n}:\mathbb{N})\{\mathsf{e}:\mathsf{Empty}\}\{\mathsf{c}:\mathsf{Corners}\}\{\mathsf{r}:\mathsf{Set}\}\rightarrow\\ \mathsf{Parser}\;\mathsf{nt}\;(\mathsf{e},\mathsf{c})\;\mathsf{r}\rightarrow\\ \mathsf{LoS}.\mathsf{Parser}\;\mathsf{n}\;(\mathsf{if}\;\mathsf{e}\;\mathsf{then}\;\mathsf{n}\;\mathsf{else}\;\mathsf{pred}\;\mathsf{n})\;\mathsf{r}\\ \ldots\\ \mathsf{parse}\;\mathsf{g}\;\mathsf{n}\quad (\_\star\_\{\mathsf{e}_1=\mathsf{true}\}\;\mathsf{p}_1\;\mathsf{p}_2)\\ =\mathsf{LoS}.\_\star\_(\mathsf{parse}\;\mathsf{g}\;\mathsf{n}\;\mathsf{p}_1)\;(\mathsf{parse}\;\mathsf{g}\;\mathsf{n}\;\mathsf{p}_2)\\ -\!\!\!-\mathsf{ok}\;\mathsf{because}\;\mathsf{p}_1\;\mathsf{and}\;\mathsf{p}_2\;\mathsf{have}\;\mathsf{a}\;\mathsf{smaller}\;\mathsf{Corners}\;\mathsf{tree}\\ \end{array}
```


Universiteit Utrecht

```
parse : { nt : ParserType } (g : Grammar nt)
 (n:\mathbb{N}){e: Empty}{c: Corners}{r: Set} \rightarrow
          Parser nt (e, c) r \rightarrow
             LoS.Parser n (if e then n else pred n) r
parse g n (- \star - \{e_1 = true\} p_1 p_2)
= LoS._ \star - (parse g n p_1) (parse g n p_2)
-- ok because p<sub>1</sub> and p<sub>2</sub> have a smaller Corners tree
parse g 0 (- \star - \{e_1 = false\} p_1 p_2)
= LoS.fail
```

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

◆□ > ◆昼 > ◆目 > ◆目 > → 目 → ○へ @

```
parse : { nt : ParserType }(g : Grammar nt)
                  (n:\mathbb{N}){e: Empty}{c: Corners}{r: Set} \rightarrow
                  Parser nt (e, c) r \rightarrow
                  LoS.Parser n (if e then n else pred n) r
 \begin{array}{ll} \mbox{parse g n} & (\_\star\_\{e_1=\mbox{true}\}\,p_1\;p_2) \\ = LoS.\_\star\_(\mbox{parse g n }p_1)\;(\mbox{parse g n }p_2) \\ & -\mbox{ok because }p_1 \mbox{ and }p_2 \mbox{ have a smaller Corners tree} \end{array} 
parse g 0 (- \star - \{e_1 = false\}p_1 p_2)
= LoS.fail
parse g (suc n) (- \star - \{e_1 = false\}p_1 p_2)
= LoS._- \star - (parse g (suc n) p_1) (parse^g n p_2)
parse^\uparrow : \cdots \rightarrow - - like parse, but results in ...
LoS.Parser n n r
```


Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Summary

- We have shown that structurally recursive parser combinators can be implemented in Agda.
- Parsers written using this library are total. Left-recursive grammars (whether directly or indirectly) are rejected at compilation time.
- More work for the implementor, not much more work for the user, except ...
- Defining reusable recursive derived combinators (e.g. many) requires a bit of additional trickery.
- ▶ The indices (Empty and Corners) can usually be inferred.
- Efficiency in current implementations is not too good, but in principle, not much overhead is involved – most of the indices are irrelevant at run time and can be eliminated.

Universiteit Utrecht

Advertisement

Interested in Agda?

Try the seminar on **"Dependently Typed Programming"** (INFOMDTP) in block 1 of 2008/2009.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

< 日 > < 目 > < 目 > < 目 > < 日 > < 日 > < 日 > < 0 < 0