
ΠΣ: Dependent Types without the Sugar

Thorsten Altenkirch1, Nils Anders Danielsson1,
Andres Löh2, and Nicolas Oury3

1 School of Computer Science, University of Nottingham
2 Institute of Information and Computing Sciences, Utrecht University

3 Division of Informatics, University of Edinburgh

Abstract. The recent success of languages like Agda and Coq demon-
strates the potential of using dependent types for programming. These
systems rely on many high-level features like datatype definitions, pat-
tern matching and implicit arguments to facilitate the use of the lan-
guages. However, these features complicate the metatheoretical study
and are a potential source of bugs.
To address these issues we introduce ΠΣ, a dependently typed core lan-
guage. It is small enough for metatheoretical study and the type checker
is small enough to be formally verified. In this language there is only one
mechanism for recursion—used for types, functions and infinite objects—
and an explicit mechanism to control unfolding, based on lifted types.
Furthermore structural equality is used consistently for values and types;
this is achieved by a new notion of α-equality for recursive definitions. We
show, by translating several high-level constructions, that ΠΣ is suitable
as a core language for dependently typed programming.

1 Introduction

Dependent types offer programmers a flexible path towards formally verified pro-
grams and, at the same time, opportunities for increased productivity through
new ways of structuring programs (Altenkirch et al. 2005). Dependently typed
programming languages like Agda (Norell 2007) are gaining in popularity, and
dependently typed programming is also becoming more popular in the Coq com-
munity (Coq Development Team 2009), for instance through the use of some re-
cent extensions (Sozeau 2008). An alternative to moving to full-blown dependent
types as present in Agda and Coq is to add dependently typed features without
giving up a traditional view of the distinction between values and types. This
is exemplified by the presence of GADTs in Haskell, and by more experimental
systems like Ωmega (Sheard 2005), ATS (Cui et al. 2005), and the Strathclyde
Haskell Enhancement (McBride 2009).

Dependently typed languages tend to offer a number of high-level features
for reducing the complexity of programming in such a rich type discipline, and
at the same time improve the readability of the code. These features include:

Datatype definitions A convenient syntax for defining dependently typed
families inductively and/or coinductively.

Pattern matching Agda offers a very powerful mechanism for dependently
typed pattern matching. To some degree this can be emulated in Coq by
using Sozeau’s new tactic Program (2008).

Hidden parameters In dependently typed programs datatypes are often in-
dexed. The indices can often be inferred using unification, which means that
the programmer does not have to read or write them. This provides an al-
ternative to polymorphic type inference à la Hindley-Milner.

These features, while important for the usability of dependently typed languages,
complicate the metatheoretic study and can be the source of subtle bugs in the
type checker. To address such problems, we can use a core language which is
small enough to allow metatheoretic study. A verified type checker for the core
language can also provide a trusted core in the implementation of a full language.

Coq makes use of a core language, the Calculus of (Co)Inductive Construc-
tions (CCIC, Giménez 1996). However, this calculus is quite complex: it includes
the schemes for strictly positive datatype definitions and the accompanying re-
cursion principles. Furthermore it is unclear whether some of the advanced fea-
tures of Agda, such as dependently typed pattern matching, the flexible use of
mixed induction/coinduction, and induction-recursion, can be easily translated
into CCIC or a similar calculus. (One can argue that a core language is less
useful if the translation from the full language is difficult to understand.)

In the present paper we suggest a different approach: we propose a core
language that is designed in such a way that we can easily translate the high-
level features mentioned above; on the other hand, we postpone the question of
totality. Totality is important for dependently typed programs, partly because
non-terminating proofs are not very useful, and partly for reasons of efficiency: if
a certain type has at most one total value, then total code of that type does not
need to be run at all. However, we believe that it can be beneficial to separate
the verification of totality from the functional specification of the code. A future
version of our core language may have support for independent certificates of
totality (and the related notions of positivity and stratification); such certificates
could be produced manually, or through the use of a termination checker.

The core language proposed in this paper is called ΠΣ and is based on a
small collection of basic features:4

– Dependent function types (Π-types) and dependent product types (Σ-types).
– A (very) impredicative universe of types with Type : Type.
– Finite sets (enumerations) using reusable and scopeless labels.
– A general mechanism for mutual recursion, allowing the encoding of ad-

vanced concepts such as induction-recursion.
– Lifted types, which are used to control recursion. These types offer a conve-

nient way to represent mixed inductive/coinductive definitions.
– A definitional equality which is structural for all definitions, whether types or

programs, enabled by a novel definition of α-equality for recursive definitions.
4 The present version is a simplification of a previous implementation, described in an

unpublished draft (Altenkirch and Oury 2008).

We have implemented an interactive type checker/interpreter for ΠΣ in Haskell.5

Before we continue, note that we have not yet developed the metatheory of
ΠΣ formally, so we would not be surprised if there were some problems with the
presentation given here. We plan to establish important metatheoretic properties
such as soundness (well-typed programs do not get stuck) for a suitably modified
version of ΠΣ in a later paper. The main purpose of this paper is to introduce
the general ideas underlying the language, and to start a discussion about them.

Outline of the Paper

We introduce ΠΣ by giving examples showing how high-level dependently typed
programming constructs can be represented (Sect. 2). We then specify the oper-
ational semantics (Sect. 3), develop the equational theory (Sect. 4), and present
the type system (Sect. 5). Finally we conclude and discuss further work (Sect. 6).

Related Work

We have already mentioned the core language CCIC (Giménez 1996). Another
dependently typed core language, that of Epigram (Chapman et al. 2006), is
basically a framework for implementing a total type theory, based on elimina-
tion combinators. Augustsson’s influential language Cayenne (1998) is like ΠΣ a
partial language, but is not a core language. The idea to use a partial core lan-
guage was recently and independently suggested by Coquand et al. (2009), who
propose a language called Mini-TT, which is also related to Coquand’s Calculus
of Definitions (2008). Mini-TT uses a nominal equality, unlike ΠΣ’s structural
equality, and unfolding of recursive definitions is not controlled explicitly by us-
ing lifted types, but by not unfolding inside patterns and sum types. The core
language FC (Sulzmann et al. 2007) provides support for GADTs, among other
things.

The use of lifted types is closely related to the use of suspensions to encode
non-strictness in strict languages (Wadler et al. 1998).

Acknowledgements

We would like to thank Andreas Abel, Thierry Coquand, Ulf Norell, Simon Pey-
ton Jones and Stephanie Weirich for discussions related to the ΠΣ project. We
would also like to thank Darin Morrison, who has contributed to the imple-
mentation of ΠΣ, and members of the Functional Programming Laboratory in
Nottingham, who have given feedback on our work.

2 ΠΣ by Example

In this section we first briefly introduce the syntax of ΠΣ (Sect. 2.1). The
rest of the section demonstrates how to encode a number of high-level fea-
tures from dependently typed programming languages in ΠΣ: (co)datatypes
5 The package pisigma is available from Hackage (http://hackage.haskell.org).

(Sects. 2.2 and 2.3), equality (Sect. 2.4), families of datatypes (Sect. 2.5), and
finally induction-recursion (Sect. 2.6).

2.1 Syntax Overview

The syntax of ΠΣ is defined as follows:

Terms t , u, σ, τ ::= let Γ in t | x | Type | (x : σ)→ τ | λx → t | t u
| (x : σ) ∗ τ | (t , u) | split t with (x , y)→ t

| { l } | ′l | case t of { l → u |}
| ↑σ | [t] | !t | Rec σ | fold t | unfold t as x → u

Contexts Γ,∆ ::= ε | Γ ; x : σ | Γ ; x = t

While there is no syntactic difference between terms and types, we use the
metavariables σ and τ to highlight positions where terms play the role of types.
We write as for an s-separated sequence of as. The language supports the fol-
lowing concepts:

Type The type of types is Type. Since ΠΣ is partial anyway due to the use of
general recursion, we also assume Type : Type.

Dependent functions We use the same notation as Agda, writing (x : σ)→ τ
for dependent function types.

Dependent products We write (x :σ)∗τ for dependent products. Elements are
constructed using tuple notation: (t , u). The eliminator split t with (x , y)→
u deconstructs the scrutinee t , binding its components to x and y , and then
evaluates u.

Enumerations Enumerations are finite sets, written { l }. The labels l do not
interfere with identifiers, can be reused and have no scope. To disambiguate
them from identifiers we use ′l to construct an element of an enumeration.
The eliminator case t of { l → u |} analyzes the scrutinee t and chooses the
matching branch.

Lifting A lifted type ↑σ contains boxed terms [t]. Definitions are not unfolded
inside boxes. If a box is forced using !, then evaluation can continue. To
enable the definition of recursive types we introduce a type former Rec which
turns a suspended type (i.e., an inhabitant of ↑Type) into a type. Rec comes
together with a constructor fold and an eliminator unfold.

Let A let expression’s first argument Γ is a context, i.e., a sequence of dec-
larations x : σ and (possibly recursive) definitions x = t . Definitions and
declarations may occur in any order in a let context, subject to the following
constraints:
– Before a variable can be defined, it must first be declared.
– Every declared variable must be defined exactly once in the same context

(subject to shadowing, i.e., x : σ; x = t ; x : τ ; x = u is fine).
– Every declaration and definition has to type check with respect to the

previous declarations and definitions. Note that the order matters and
that we cannot always shift all declarations before all definitions, because
type checking a declaration may depend on the definition of a mutually
defined variable (see Sect. 2.6).

To simplify the presentation, ΠΣ—despite being a core language—allows a mod-
icum of syntactic sugar: A non-dependent function type can be written as σ → τ ,
and a non-dependent product as σ ∗ τ (both → and ∗ associate to the right).
Several variables may be bound at once in λ abstractions (λx1 x2 . . . xn → t),
function types ((x1 x2 . . . xn :σ)→ τ), and product types ((x1 x2 . . . xn :σ)∗τ). We
can also combine a declaration and a subsequent definition: instead of x :σ; x = t
we write x :σ = t . Finally we write unfold t as a shorthand for unfold t as x → x .

2.2 Datatypes

ΠΣ does not have a builtin mechanism to define datatypes. Instead, we rely
on its more primitive features—finite types, Σ-types, recursion and lifting—to
model datatypes.

As a simple example, consider the declaration of (Peano) natural numbers
and addition. We represent Nat as a recursively defined Σ-type whose first com-
ponent is a tag (zero or suc), indicating which constructor we are using, and
whose second component gives the type of the constructor arguments:

Nat : Type = (l : {zero suc}) ∗ case l of {zero → Unit | suc → Rec [Nat]};

In the case of zero we use a one element type Unit which is defined by Unit :
Type = {unit }. The recursive occurrence of Nat is placed inside a box (i.e.,
[Nat] rather than Nat). Boxing prevents infinite unfolding during evaluation.
Evaluation is performed while testing type equality, and boxing is essential to
keep the type checker from diverging. Note also that we need to use Rec because
[Nat] has type ↑Type but we expect an element of Type here.

Using the above representation we can derive the constructors zero : Nat =
(′zero, ′unit) and suc :Nat → Nat = λi → (′suc, fold i). (We use fold to construct
an element of Rec [Nat].) Addition can then be defined as follows:

add : Nat → Nat → Nat ;
add = λm n → split m with (ml ,mr)→

! case ml of { zero → [n]
| suc → [suc (add (unfold mr) n)]};

Here we use dependent elimination, i.e., the typing rules for split and case exploit
the constraint that the scrutinized term is equal to the corresponding pattern. In
the zero branch mr has type Unit , and in the suc branch it has type Rec [Nat].
In the latter case we use unfold to get a term of type Nat .

Note that, yet again, we use boxing to stop the infinite unfolding of the
recursive call (type checking a dependently typed program can involve eval-
uation under binders). We have to box both branches of the case to satisfy
the type checker—they both have type ↑Nat . Once the variable ml gets in-
stantiated with a concrete label the case reduces and the box in the match-
ing case branch gets forced by the !. As a consequence, computations like 2 +
1, i.e., add (suc (suc zero)) (suc zero), evaluate correctly—in this case to
(′suc, fold (′suc, fold (′suc, fold (′zero, ′unit)))).

2.3 Codata

The type Nat is an eager datatype, corresponding to an inductive definition. In
particular, it does not make sense to write the following definition:

omega : Nat = (′suc, fold omega);

Here the recursive occurrence is not guarded by a box and hence omega will
simply diverge if evaluation to normal form is attempted. To define a lazy or
coinductive type like the type of streams we have to use lifting (↑ . . .) explicitly
in the type definition:

Stream : Type→ Type = λA→ A ∗ Rec [↑(Stream A)];

We can now define programs by corecursion. As an example we define from, a
function that creates streams of increasing numbers:

from : Nat → Stream Nat ;
from = λn → (n, fold [from (suc n)]);

The type system forces us to protect the recursive occurrence with a box. Evalua-
tion of from zero terminates with (zero, let n :Nat = zero in fold [from (suc n)]).

The use of lifting to indicate corecursive occurrences allows a large flexibility
in defining datatypes. In particular, it facilitates the definition of mixed induc-
tive/coinductive types such as the type of stream processors (Hancock et al.
2009), a concrete representation of functions on streams:

SP : Type→ Type→ Type;
SP = λA B → (l : {get put }) ∗ case l of { get → A→ Rec [SP A B]

| put → B ∗ Rec [↑(SP A B)]};

The basic idea of stream processors is that we can only perform a finite number
of gets before issuing the next of infinitely many puts. As an example we define
the identity stream processor corecursively:

idsp : (A : Type)→ SP A A;
idsp = λA→ (′get , (λa → fold (′put , (a, fold [idsp A]))));

We can use mixed recursion/corecursion to define the semantics of stream pro-
cessors in terms of functions on streams:

eval : (A B : Type)→ SP A B → Stream A→ Stream B ;
eval = λA B sp aas → split sp with (sp l , spr)→ !case sp l of
{ get → split aas with (a, aas ′)→ [(eval A B (unfold (spr a)) (!(unfold aas ′)))]
| put → split spr with (b, sp′) → [(b, fold [eval A B (!(unfold sp′)) aas])]};

Inspired by ΠΣ the latest version of Agda also supports definitions using mixed
induction and coinduction, using basically the same mechanism (but in a to-
tal setting). Applications of such mixed definitions are explored in more detail
by Danielsson and Altenkirch (2009).

High-level languages such as Agda and Coq control the evaluation of recursive
definitions using the evaluation context, with different mechanisms for defining
datatypes and values. In contrast, ΠΣ handles recursion uniformly, at the cost of
additional annotations stating where to lift, box and force. For a core language
this seems to be a price worth paying, though. We can still recover syntactical
conveniences as part of the translation of high-level features.

2.4 Equality

ΠΣ does not come with a propositional equality like the one provided by in-
ductive families in Agda, and currently such an equality cannot, in general, be
defined. This omission is intentional. In the future we plan to implement an
extensional equality, similar to that described by Altenkirch et al. (2007), by re-
cursion over the structure of types. However, for types with decidable equality a
(substitutive) equality can be defined in ΠΣ as it is. As an example, we consider
natural numbers again (cf. Sect. 2.2); see also Sect. 2.6 for a generic approach.

Using Bool : Type = {true false }, we first implement a decision procedure
for equality of natural numbers (omitted here due to lack of space):

eqNat : Nat → Nat → Bool ;

We can lift a Boolean to the type level using the truth predicate T , and then
use that to define equality:

Empty : Type = { };
T : Bool → Type = λb → case b of {true → Unit | false → Empty };
EqNat : Nat → Nat → Type = λm n → T (eqNat m n);

Using recursion we now implement a proof 6 of reflexivity:

reflNat : (n : Nat)→ EqNat n n;
reflNat = λn → split n with (nl ,nr)→ !case nl of { zero → [′unit]

| suc → [reflNat (unfold nr)]};

Note the use of dependent elimination to encode dependent pattern matching
here. Currently dependent elimination is only permitted if the scrutinee is a
variable (as is the case for n and nl here; see Sect. 5), but the current design
lacks subject reduction for open terms (see Sect. 6), so we may reconsider this
design choice.

To complete the definition of equality we have to show that EqNat is substi-
tutive. This can also be done by recursion over the natural numbers (we omit
the definition for reasons of space):

substNat : (P : Nat → Type)→ (m n : Nat)→ EqNat m n → P m → P n;

Using substNat and reflNat it is straightforward to show that EqNat is a con-
gruence. For instance, transitivity can be proved as follows:
6 Because termination is not checked, reflNat is not a formal proof. However, in this

case it easy to see that the definition is total.

transNat : (i j k : Nat)→ EqNat i j → EqNat j k → EqNat i k ;
transNat = λi j k p q → substNat (λx → EqNat i x) j k q p;

The approach outlined above is limited to types with decidable equality.
While we can define a non-boolean equality eqStreamNat : Stream Nat →
Stream Nat → Type (corresponding to the extensional equality of streams, or
bisimulation), we cannot derive a substitution principle. The same applies to
function types, where we can define an extensional equality but not prove it to
be substitutive.

2.5 Families

Dependent datatypes, or families, are the workhorse of dependently typed lan-
guages like Agda. As an example, consider the definition of vectors (lists indexed
by their length) in Agda:

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : {n : N}→A→Vec A n→Vec A (suc n)

Using another family, the family of finite sets, we can define a total lookup
function for vectors. This function, unlike its counterpart for lists, will never
raise a runtime error:

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N}→ Fin n→ Fin (suc n)

lookup : ∀ {A n }→ Fin n→Vec A n→A
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

How can we encode these families and the total lookup function in ΠΣ? One
possibility is to use recursion over the natural numbers:

Vec : Type→ Nat → Type;
Vec = λA n → split n with (nl ,nr)→ ! case nl of

{ zero → [Unit]
| suc → [A ∗Vec A (unfold nr)]};

Fin : Nat → Type;
Fin = λn → split n with (nl ,nr)→ case nl of

{ zero → {}
| suc → (l : {zero suc}) ∗ ! case l of { zero → [Unit]

| suc → [Fin (unfold nr)]}};

Given these types it is straightforward to define lookup by recursion over the
natural numbers:

lookup : (A : Type)→ (n : Nat)→ Fin n → Vec A n → A;

However, these recursive encodings do not reflect the nature of the definitions
in Agda, which are not using recursion over the indices. There are types which
cannot easily be encoded this way, for example the simply typed λ-terms indexed
by contexts and types. To define Agda-style families we can use explicit equalities
instead:

Vec : Type→ Nat → Type;
Vec = λA n → (l : {nil cons }) ∗

case l of { nil → EqNat zero n
| cons → (n ′ : Nat) ∗A ∗ (Rec [Vec A n ′]) ∗ EqNat (suc n ′) n };

Fin : Nat → Type;
Fin = λn → (l : {zero suc}) ∗

case l of { zero → (n ′ : Nat) ∗ EqNat (suc n ′) n
| suc → (n ′ : Nat) ∗ (Rec [Fin n ′]) ∗ EqNat (suc n ′) n };

Terms corresponding to the Agda constructors, for instance :: , are definable:

cons : (A : Type)→ (n : Nat)→ A→ Vec A n → Vec A (suc n);
cons = λA n a v → (′cons, (n, (a, (fold v , reflNat (suc n)))));

For reasons of space we omit the implementation of lookup based on these
definitions—it has to make the equational reasoning which is behind the Agda
pattern matching explicit (Goguen et al. 2006).

2.6 Universes

In Sect. 2.4 we remarked that we can define equality for types with a decidable
equality on a case by case basis. However, we can do better, using the fact
that datatype-generic programming via reflection can be represented within a
language like ΠΣ. Which types have a decidable equality? Clearly, if we only use
enumerations, dependent products and (well-behaved) recursion, then equality
is decidable. We can reflect the syntax and semantics of this subset of ΠΣ’s type
system as a type.

We exploit the fact that ΠΣ allows very flexible mutually recursive definitions
to encode induction-recursion (Dybjer and Setzer 2006). We define a universe U
of type codes together with a decoding function El . We start by declaring both:

U : Type; El : U → Type;

We can then define U using the fact that we know the type (but not the defini-
tion) of El :

U = (l : {enum sigma box }) ∗ case l of {enum → Nat
| sigma → Rec [(a : U) ∗ (El a → U)]
| box → Rec [↑U]};

Note that we define enumerations up to isomorphism—we only keep track of the
number of constructors. El is defined by exploiting that we know the types of
U and El , and also the definition of U :

El = λu → split u with (ul , ur)→ ! case ul of
{ enum → [Fin ur]
| sigma → [unfold ur as u ′r → split u ′r with (b, c)→ (x : El b) ∗ El (c x)]
| box → [unfold ur as u ′r → Rec [El (!u ′r)]]};

Note that, unlike in a simply typed framework, we cannot arbitrarily change
the order of the definitions above—the definition of U is required to type check
El . ΠΣ supports any kind of mutually recursive definition, with declarations
and definitions appearing in any order (subject to the requirement that there
is exactly one definition per declaration), as long as each item type checks with
respect to the previous items.

It is straightforward to translate type definitions into elements of U . For
instance, Nat can be represented as follows:

nat : U = (′sigma, fold ((′enum, suc (suc zero)), (λi →
split i with (il , ir)→ ! case il of { zero → [(′enum, suc zero)]

| suc → [(′box , fold [nat])]})));

We can now define a generic decidable equality eq :(a :U)→ El a → El a → Bool
by recursion over U (omitted here). Note that the encoding can also be used for
families with decidable equality; Fin can for instance be encoded as an element
of El nat → U .

3 β-reduction

This section gives an operational semantics for ΠΣ by inductively defining the
notion of (weak) β-reduction. Instead of defining substitution we use local defi-
nitions; in this sense ΠΣ is an explicit substitution calculus.

We start by defining ∆ ` x = t , which is derivable if the definition x = t is
visible in ∆. The rules are straightforward:

∆; x = t ` x = t

∆ ` x = t x 6≡ y

∆; y : σ ` x = t

∆ ` x = t x 6≡ y

∆; y = u ` x = t

Values (v), weak head normal forms (w) and neutral values (n) are defined
as follows:

v ::= w | n
w ::= Type | (x : σ)→ τ | λx → t | (x : σ) ∗ τ | (t , u) | { l } | ′l | ↑σ | [t] | Rec σ | fold t

n ::= x | n t | split n with (x , y)→ t | case n of { l → t |} | !n | unfold n as x → t

We specify β-reduction using a big-step semantics; ∆ ` t v means that t
β-reduces to v in the context ∆. To avoid cluttering the rules with renamings
we give simplified rules in which we assume that variables are suitably fresh;
x #∆ means that x is not declared in ∆. Reduction and equality do not keep
track of all type information, so we allow declarations without a type signature,
denoted by x :, and use the abbreviation x := t for x :; x = t . We also overload ;
for concatenation of contexts:

∆ ` w w

∆ ` t (t0, t1) x , y #∆ ∆ ` let x := t0; y := t1 in u v

∆ ` split t with (x , y)→ u v

∆ ` x = t ∆ ` t v

∆ ` x v

∆ ` t λx → t ′ x #∆ ∆ ` let x := u in t ′ v

∆ ` t u v

∆ ` t ′li ∆ ` ui v

∆ ` case t of { li → ui
|} v

∆ ` t [u] ∆ ` u v

∆ ` !t v

∆ ` t fold t ′ x #∆ ∆ ` let x := t ′ in u v

∆ ` unfold t as x → u v

∆;Γ ` t v ∆ ` let Γ in v 7→ v ′

∆ ` let Γ in t v ′

The let rule uses the auxiliary relation ∆ ` let Γ in v 7→ v ′, which pushes lets
inside constructors. We only give a representative selection of the rules for this
relation. Note that it maps neutral terms to neutral terms:

x #∆;Γ

∆ ` let Γ in λx → t 7→ λx → let Γ in t ∆ ` let Γ in [t] 7→ [let Γ in t]

∆;Γ 6` x = t

∆ ` let Γ in x 7→ x

∆ ` let Γ in n 7→ n ′

∆ ` let Γ in n t 7→ n ′ (let Γ in t)

∆ ` let Γ in n 7→ n ′ x #∆;Γ

∆ ` let Γ in unfold n as x → t 7→ unfold n ′ as x → let Γ in t

Finally we give some of the rules for computations which are stuck:
∆ 6` x = t

∆ ` x x

∆ ` t n

∆ ` t u n u

∆ ` t n

∆ ` unfold t as x → u unfold n as x → u

4 α- and β-equality

As mentioned earlier, ΠΣ uses a structural equality for recursive definitions. This
makes it necessary to define a novel notion of α-equality. Let us look at some
examples. We have already discussed the use of boxes to stop infinite unfolding
of recursive definitions. This is achieved by specifying that inside a box we are
only using α-equality. For instance, the following terms are not β-equal, because
this would require looking up a definition inside a box:7

let x : Bool = ′true in [x] 6≡β [′true].

However, we still want the ordinary α-equality

let x : Bool = ′true in [x] ≡α let y : Bool = ′true in [y]

to hold, because we can get from one side to the other by consistently renaming
bound variables. This means that we have to compare the definitions of vari-
ables which we want to identify—while being careful not to expand recursive
definitions indefinitely—because clearly
7 In this particular example the definition is not actually recursive, but this is irrele-

vant, because we do not distinguish between recursive and non-recursive definitions.

let x : Bool = ′true in [x] 6≡β let y : Bool = y in [y].

We also want to allow weakening:

let x : Bool = ′true; y : Bool = ′false in [x] ≡α let z : Bool = ′true in [z].

We achieve the goals outlined above by specifying that two expressions of
the form let Γ in t and let Γ ′ in t ′ are α-equivalent if there is a partial bijection
(a bijection on a subset) between the variables defined in Γ and Γ ′ so that t
and t ′ are α-equal up to this identification of variables; the identified variables,
in turn, are required to have β-equal definitions (up to some relevant partial
bijection). In the implementation we construct this identification lazily: if we
are forced to identify two let-bound variables, we replace the definitions of these
variables with a single, fresh (undefined) variable and check whether the original
definitions are equal. This way we do not unfold recursive definitions more than
once.

We specify partial bijections using ϕ ::= ε | ϕ; (ι, o), where ι, o ::= x | −. Here
(x ,−) is used when the variable x is ignored, i.e., not a member of the partial
bijection. Lookup is specified as follows:

ϕ; (x , y) ` x ∼ y

ϕ ` x ∼ y x 6≡ ι y 6≡ o

ϕ; (ι, o) ` x ∼ y

We specify α- and β-equality at the same time, indexing the rules on the
metavariable κ ∈ {α, β}, because all but one rule is shared between the two
equalities. The judgement ϕ : ∆∼∆′ ` t ≡κ t ′ means that, given a partial
bijection ϕ for the contexts ∆ and ∆′, the terms t and t ′ are κ-equivalent.
The difference between α- and β-equality is that the latter is closed under β-
reduction:

∆ ` t v ∆′ ` t ′ v ′ ϕ :∆∼∆′ ` v ≡β v ′

ϕ :∆∼∆′ ` t ≡β t ′

The remaining rules apply to both equalities. Variables are equal if identified by
the partial bijection:

ϕ ` x ∼ y

ϕ :∆∼∆′ ` x ≡κ y

A congruence rule is included for each term former. For reasons of space we omit
most of these rules—the following are typical examples:

ϕ :∆∼∆′ ` t ≡κ t ′

ϕ :∆∼∆′ ` u ≡κ u ′

ϕ :∆∼∆′ ` t u ≡κ t ′ u ′
ϕ; (x , x ′) : (∆; x :)∼ (∆′; x ′:) ` t ≡κ t ′

ϕ :∆∼∆′ ` λx → t ≡κ λx ′ → t ′

As noted above, the congruence rule for boxes only allows α-equality in the
premise:

ϕ :∆∼∆′ ` t ≡α t ′

ϕ :∆∼∆′ ` [t] ≡κ [t ′]

Finally we have some rules for let expressions. Empty lets can be added, and
contexts can be merged (we omit the symmetric cases):

ϕ :∆∼∆′ ` let ε in t ≡κ t ′

ϕ :∆∼∆′ ` t ≡κ t ′
ϕ :∆∼∆′ ` let Γ ;Γ ′ in t ≡κ t ′

ϕ :∆∼∆′ ` let Γ in let Γ ′ in t ≡κ t ′

There is also a congruence rule. This rule uses an auxiliary judgement ϕ:∆∼∆′ `
ψ : Γ ∼Γ ′ which extends a partial bijection over a pair of contexts (ψ can be
seen as the rule’s “output”). Note that ; is overloaded for concatenation:

ϕ :∆∼∆′ ` ψ : Γ ∼Γ ′ ϕ;ψ : (∆;Γ)∼ (∆′;Γ ′) ` t ≡κ t ′

ϕ :∆∼∆′ ` let Γ in t ≡κ let Γ ′ in t ′

The rules for ϕ : ∆∼∆′ ` ψ : Γ ∼Γ ′ allow us to choose which variables get
identified and which are ignored. The base case is ϕ :∆∼∆′ ` ε : ε∼ ε. We can
extend a partial bijection by identifying two variables, under the condition that
the associated types are β-equal:

ϕ :∆∼∆′ ` ψ : Γ ∼Γ ′ ϕ;ψ : (∆;Γ)∼ (∆′;Γ ′) ` σ ≡β σ
′

ϕ :∆∼∆′ ` (ψ; (x , x ′)) : (Γ ; x : σ)∼ (Γ ′; x ′ : σ′)

Alternatively, we can ignore a declaration:

ϕ :∆∼∆′ ` ψ : Γ ∼Γ ′

ϕ :∆∼∆′ ` (ψ; (x ,−)) : (Γ ; x : σ)∼Γ ′
ϕ :∆∼∆′ ` ψ : Γ ∼Γ ′

ϕ :∆∼∆′ ` (ψ; (−, x ′)) : Γ ∼ (Γ ′; x ′ : σ′)

To check whether two definitions are equal we compare the terms using β-
equality. Note that this takes place before the definitions are added to the con-
text:

ϕ :∆∼∆′ ` ψ : Γ ∼Γ ′ ϕ;ψ ` x ∼ x ′ ϕ;ψ : (∆;Γ)∼ (∆′;Γ ′) ` t ≡β t ′

ϕ :∆∼∆′ ` ψ : (Γ ; x = t)∼ (Γ ′; x ′ = t ′)

The definition of an ignored variable has to be ignored as well:

ϕ :∆∼∆′ ` ψ : Γ ∼Γ ′ ϕ;ψ ` x ∼ −
ϕ :∆∼∆′ ` ψ : (Γ ; x = t)∼Γ ′

ϕ :∆∼∆′ ` ψ : Γ ∼Γ ′ ϕ;ψ ` −∼ x ′

ϕ :∆∼∆′ ` ψ : Γ ∼ (Γ ′; x ′ = t ′)

Definitions and declarations can also be reordered if they do not depend on each
other. For reasons of space we omit the details.

In the typing rules in Sect. 5 we only use κ-equality with respect to the
identity partial bijection, so we define ∆ ` t ≡κ u to mean id∆ :∆∼∆ ` t ≡κ u.

5 The Type System

We define a bidirectional type system. There are three main, mutually inductive
judgements: Γ ` ∆, which means that ∆ is well-formed with respect to Γ ;
Γ ` t ⇐ σ, which means that we can check that t has type σ; and Γ ` t ⇒ σ,
which means that we can infer that t has type σ. We also use Γ ` x : σ, which
means that x : σ is visible in Γ :

Γ ; x : σ ` x : σ

Γ ` x : σ x 6≡ y

Γ ; y : τ ` x : σ

Γ ` x : σ

Γ ; y = t ` x : σ

Context formation is specified as follows:

Γ ` ε
Γ ` ∆ Γ ;∆ ` σ ⇐ Type

Γ ` ∆; x : σ

Γ ` ∆ Γ ;∆ ` x ⇒ σ Γ ;∆ ` t ⇐ σ

Γ ` ∆; x = t

There is one type checking rule which applies to all terms: the conversion
rule. This rule changes the direction: if we want to check whether a term has
type τ , we can first infer the type σ and then verify that σ and τ are convertible:

Γ ` τ ⇐ Type Γ ` t ⇒ σ Γ ` σ ≡β τ

Γ ` t ⇐ τ

The remaining rules apply to specific term formers. We have chosen to sim-
plify some of the rules to avoid the use of renamings. This means that the type
system, as given, is not closed under α-equality. The rules below use two new
metavariables: �, which stands for the quantifiers→ and ∗; and⇔, which can be
instantiated with either ⇒ or ⇐. We also use the notation Γ ` t ⇒β σ, which
stands for Γ ` t ⇒ σ′ and Γ ` σ′ σ. This is used when we match against a
particular type constructor:

Γ ` ∆ Γ ` ρ⇐ Type
Γ ` ρ ≡α let ∆ in σ Γ ;∆ ` t ⇐ σ

Γ ` let ∆ in t ⇐ ρ

Γ ` ∆ Γ ;∆ ` t ⇒ σ

Γ ` let ∆ in t ⇒ let ∆ in σ

ε ` Γ Γ ` x : σ

Γ ` x ⇒ σ

ε ` Γ
Γ ` Type⇔ Type

Γ ` σ ⇐ Type
Γ , x : σ ` τ ⇐ Type

Γ ` (x : σ) � τ ⇒ Type

Γ ` ρ⇐ Type
Γ ` ρ (x : σ)→ τ
Γ , x : σ ` t ⇐ τ

Γ ` λx → t ⇐ ρ

Γ ` t ⇒β (x : σ)→ τ
Γ ` u ⇐ σ x #Γ

Γ ` t u ⇒ let x : σ = u in τ

Γ ` ρ⇐ Type Γ ` ρ (x : σ) ∗ τ
Γ ` t ⇐ σ x #Γ
Γ ` u ⇐ let x : σ = t in τ

Γ ` (t , u)⇐ ρ

Γ ` ρ⇐ Type x , y #Γ

Γ ` t ⇒β (x : σ) ∗ τ Γ ` t z
Γ ; x : σ; y : τ ; z = (x , y) ` u ⇐ ρ

Γ ` split t with (x , y)→ u ⇐ ρ

ε ` Γ
Γ ` { l } ⇒ Type

Γ ` ρ⇐ Type

Γ ` ρ { l } m ∈ l

Γ ` ′m ⇐ ρ

Γ ` ρ⇐ Type

Γ ` t ⇒β { l } Γ ` t x
(Γ, x = ′li ` ui ⇐ ρ)i

Γ ` case t of { l → u } ⇐ ρ

Γ ` σ ⇐ Type

Γ ` ↑σ ⇒ Type

Γ ` ρ⇐ Type
Γ ` ρ ↑σ
Γ ` t ⇐ σ

Γ ` [t]⇐ ρ

Γ ` t ⇒ σ

Γ ` [t]⇒ ↑σ
Γ ` t ⇒β ↑σ
Γ ` !t ⇒ σ

Γ ` t ⇐ ↑σ
Γ ` !t ⇐ σ

Γ ` σ ⇐ ↑Type

Γ ` Rec σ ⇒ Type

Γ ` ρ⇐ Type
Γ ` ρ Rec σ
Γ ` t ⇐ !σ

Γ ` fold t ⇐ ρ

Γ ` t ⇒ σ

Γ ` fold t ⇒ Rec [σ]

Γ ` ρ⇐ Type
Γ ` t ⇒β Rec σ
Γ ` t y x #Γ
Γ ; x :!σ; y = fold x ` u ⇐ ρ

Γ ` unfold t as x → u ⇐ ρ

The let rules have a side-condition: the context ∆ must contain exactly one
definition for every declaration, as specified in Sect. 2.1. The case rule’s indexed
premise must hold for each of the branches, and there must be exactly one branch
for every label in { l } (recall that { l } stands for a set of labels).

Above we have listed the dependent elimination rules for products, labels and
Rec (the rules for split, case and unfold). There are also non-dependent variants,
which do not require the scrutinee to reduce to a variable, but whose premises
do not get the benefit of equality constraints.

6 Conclusions

The definition of ΠΣ uses several innovations to meet the challenge of providing
a concise core language for dependently typed programming. We are able to use
one recursion mechanism for the definition of both types and (recursive or core-
cursive) programs, relying essentially on lifted types and boxes. We also permit
arbitrary mutually recursive definitions where the only condition is that, at any
point in the program, the current definition or declaration has to type check
with respect to the current context—this captures inductive-recursive defini-
tions. Furthermore all programs and types can be used locally in let expressions;
the top-level does not have special status. To facilitate this flexible use of let
expressions we have introduced a novel notion of α-equality for recursive defi-
nitions. As a bonus the use of local definitions makes it unnecessary to define
substitution as an operation on terms.

Much remains to be done. We need to demonstrate the usefulness of ΠΣ by
using it as a core language for an Agda-like language. As we have seen in Sect. 2
this seems possible, provided we restrict indexing to types with a decidable
equality. We plan to go further and realize an extensional equality for higher
types based on previous work (Altenkirch et al. 2007).

The current type system is less complicated than that described in a previ-
ous draft paper (Altenkirch and Oury 2008). We have simplified the system by
restricting dependent elimination to the case where the scrutinee reduces to a
variable. Unfortunately subject reduction for open terms does not hold in the
current design, because a variable may get replaced by a neutral term during
reduction. We may allow dependent elimination for arbitrary terms again in a
later version of ΠΣ.

Having a small language makes complete reflection feasible, opening the door
for generic programming. Another goal is to develop ΠΣ’s metatheory formally.
The distance between the specification and the implementation seems small
enough that we plan to develop a verified version of the type checker in Agda
(using the partiality monad). This type checker can then be translated into ΠΣ
itself. Using this implementation we hope to be able to formally verify central
aspects of (some version of) the language, most importantly type-soundness:
β-reduction does not get stuck for closed, well-typed programs.

References

Thorsten Altenkirch and Nicolas Oury. ΠΣ: A core language for dependently typed
programming. Draft, 2008.

Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types
matter. Draft, 2005.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality,
now! In Proceedings of the 2007 workshop on Programming languages meets program
verification, pages 57–68, 2007.

Lennart Augustsson. Cayenne — a language with dependent types. In Proceedings
of the third ACM SIGPLAN international conference on Functional programming,
pages 239–250, 1998.

James Chapman, Thorsten Altenkirch, and Conor McBride. Epigram reloaded: A
standalone typechecker for ETT. In Trends in Functional Programming, volume 6.
Intellect, 2006.

The Coq Development Team. The Coq Proof Assistant Reference Manual, Version 8.2,
2009.

Thierry Coquand. A calculus of definitions. Draft, available at http://www.cs.

chalmers.se/~coquand/def.pdf, 2008.
Thierry Coquand, Yoshiki Kinoshita, Bengt Nordström, and Makoto Takeyama. A

simple type-theoretic language: Mini-TT. In From Semantics to Computer Science;
Essays in Honour of Gilles Kahn, pages 139–164. Cambridge University Press, 2009.

Sa Cui, Kevin Donnelly, and Hongwei Xi. ATS: A language that combines programming
with theorem proving. In FroCoS 2005, volume 3717 of LNCS, pages 310–320, 2005.

Nils Anders Danielsson and Thorsten Altenkirch. Mixing induction and coinduction.
Draft, 2009.

Peter Dybjer and Anton Setzer. Indexed induction-recursion. Journal of Logic and
Algebraic Programming, 66(1):1–49, 2006.

Eduardo Giménez. Un Calcul de Constructions Infinies et son Application à la
Vérification de Systèmes Communicants. PhD thesis, Ecole Normale Supérieure
de Lyon, 1996.

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pat-
tern matching. In Algebra, Meaning and Computation; Essays dedicated to Joseph A.
Goguen on the Occasion of His 65th Birthday, volume 4060 of LNCS, pages 521–540.
Springer-Verlag, 2006.

Peter Hancock, Dirk Pattinson, and Neil Ghani. Representations of stream processors
using nested fixed points. Logical Methods in Computer Science, 5(3:9), 2009.

Conor McBride. the Strathclyde Haskell Enhancement. Available at http://personal.
cis.strath.ac.uk/~conor/pub/she/, 2009.

Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology and Göteborg University, 2007.

Tim Sheard. Putting Curry-Howard to work. In Proceedings of the 2005 ACM SIG-
PLAN workshop on Haskell, pages 74–85, 2005.

Matthieu Sozeau. Un environnement pour la programmation avec types dépendants.
PhD thesis, Université Paris 11, 2008.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Don-
nelly. System F with type equality coercions. In Proceedings of the 2007 ACM
SIGPLAN International Workshop on Types in Languages Design and Implementa-
tion, pages 53–66, 2007.

Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict
language, without even being odd. In The 1998 ACM SIGPLAN Workshop on ML,
1998.

