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My completely biased world view

Languages are everywhere!

I Nearly every (CS) concept is based on a language (even if
you never see it).

I Nearly every tool is a compiler (translating one language
into another).



My completely biased world view

Languages are everywhere!

I Nearly every (CS) concept is based on a language (even if
you never see it).

I Nearly every tool is a compiler (translating one language
into another).



What is an (E)DSL?

I DSL = domain-specific language (fuzzy concept)
I EDSL = embedded DSL

In essence, EDSLs are just Haskell libraries:
I a limited set of types and functions;
I certain rules for composing sensible expressions out of

these building blocks;
I often a certain unique look and feel;
I often understandable without having to know (all about) the

host language.
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DSLs vs. EDSLs

DSLs
I complete design freedom,
I limited syntax, thus easy to understand, usable by

non-programmers,
I requires dedicated compiler, development tools,
I hard to extend with general-purpose features.

EDSLs
I design tied to capabilities of host language,
I compiler and general-purpose features for free,
I complexity of host language available but exposed,
I several EDSLs can be combined and used together.



DSLs vs. EDSLs

DSLs
I complete design freedom,
I limited syntax, thus easy to understand, usable by

non-programmers,
I requires dedicated compiler, development tools,
I hard to extend with general-purpose features.

EDSLs
I design tied to capabilities of host language,
I compiler and general-purpose features for free,
I complexity of host language available but exposed,
I several EDSLs can be combined and used together.



Haskell (or rather: Hackage) is full of EDSLs!

parsing

pretty-printing

(attribute) grammars

testing

images

animations

music

concurrency

parallelism

hardware descriptions

array computations

database queries

web applications

workflows

GUIs

data accessors / lenses

HTML

JavaScript

(de)serialization



Why?

In this talk,
I we will look at a number of reasons why Haskell is

particularly well-suited as a host language for EDSLs,
I and also at what might still be tricky.

Many (but not all) points are valid
for other FP languages as well.
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Starting point: how do we design an EDSL?

More than one way . . .

. . . but it makes sense to talk separately about:
I the (inter)face of the DSL,
I and its implementation.
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Syntactic flexibility is nice

It allows us to create a familiar look-and-feel.

Haskell features that help:
I user defined operators and priorities,
I overloading, in particular overloaded literals,
I do -notation,
I function calls without parentheses,
I quasi-quoting,
I . . .



Syntax samples

HaskellDB:

query =
do cust← table customers

restrict (cust ! city .= =. "London")
project (cust ! customerID)

Parser combinators:

expr = Let<$ keyword "let"<∗> decl<∗
keyword "in" <∗> expr

<|> operatorExpr

See haskelldb and uu-parsinglib on HackageDB.



More syntax examples

(X)HTML:

htmlPage content =
(header<< ((thetitle<< "An awesome page")

+++ (script ! [ thetype "text/javascript",
src "http://ajax.google..."]<< "")

))
+++ (body<< content)

But let’s not focus on syntax today . . .

See html and xhtml on HackageDB.

Have a look at BASIC on HackageDB by Lennart Augustsson and
“Techniques for Embedding Postfix Languages in Haskell” by Chris Okasaki
for some ideas of what you can do.
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Types are important!

Normally, we’re told that types
I prevent errors, or perhaps

I serve as checked documentation.

In an EDSL (but also in other programs), they also
I guide the programmer.
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A classic example: pretty-printing

Excerpts from the interface of Text.Pretty :

text :: String→ Doc
empty :: Doc
(<>) :: Doc→ Doc→ Doc
sep :: [Doc]→ Doc
render :: Doc→ String

Also see the pretty package on HackageDB.



Another example: parallel computations

Excerpts from the interface of Control.Monad.Par :

return :: a→ Par a
new :: Par (IVar a)
get :: IVar a→ Par a
put_ :: IVar a→ a→ Par ()
fork :: Par ()→ Par ()
(>>=) :: Par a→ (a→ Par b)→ Par b
runPar :: Par a→ a

Note:
I IVar and Par are library-specific parameterized types,

I (>>=) is a higher-order function.

Also see the monad-par package on HackageDB, by Ryan Newton and
Simon Marlow.
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Higher-order functions and Laziness

I Higher-order functions enable to define glue or control
operators that allow us to combine code in various ways,
so that the EDSL feels natural to use.

I Together with laziness, they make us quite independent of
the evaluation behaviour of the embedded language (i.e.,
we can embed a strict language in Haskell).

I Laziness strengthens modularity and code reuse.

See Lennart Augustsson’s blog post “More points for lazy evaluation” for a
great summary.



User-defined parameterized types

The presence of user-defined parameterized types gives us:
I a way to describe different “kinds of computation”

(e.g. Par )
I that are related to the underlying Haskell types (such as

Par a is related to a ),
I but we have complete control on how to construct,

combine, or eliminate these computations.



Control over the types of terms we construct

Example:

mkInt :: Int→ X Int
mkChar :: Char→ X Char
combine :: X a→ X a→ X a
pair :: X a→ X b→ X (a,b)
run :: X a→ a

Note:
I We can never create an X Bool !
I Useful if the EDSL has more limited types than Haskell.
I Could for example be used to represent values that allow a

particular compact representation.
See adaptive-containers and repa on HackageDB for examples of
packages that use adaptive compact representations of “embedded” values.
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Regions

Classic problem:
I allocate a reference/resource in one computation,
I pass it to an independent computation,
I access it there.

Type system solution:
I computations and resources are parameterized by an

(unknown) region,
I computations must not make assumptions about the

region they ultimately run in,
I passing a reference to another computation assumes their

regions are the same, so they can no longer be run
independently.
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Region example: state threads

From Control.Monad.ST and Data.STRef (base):

newSTRef :: a→ ST s (STRef s a)
readSTRef :: STRef s a→ ST s a
runST :: (∀s.ST s a)→ a

Note:
I in Haskell, we can make no assumptions about a

universally quantified type;
I if we want run-time type analysis of some sort, we have to

change the type, and lose the guarantees.

Also see “Lightweight monadic regions” by Oleg Kiselyov and Chung-chieh
Shan for a more general approach, and regions on HackageDB by Bas van
Dijk.
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Effects

Haskell is (relatively) pure. We have control over effects that
are explicit in the types.

a -- some type, no effect
IO a -- IO, exceptions, random numbers, concurrency, . . .
Gen a -- random numbers only
ST s a -- mutable variables only
STM a -- software transactional memory log variables only
State s a -- (persistent) state only
Error a -- exceptions only
Signal a -- time-changing value
. . .

A type gives us valuable information, from “no effects allowed”
(e.g. Int ) to “everything is allowed” (e.g. IO Int ).
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Effects example: software transactional memory

Software transactional memory is a lock-free approach to
concurrency and shared data:
I groups of actions in a thread can be executed atomically,
I each such atomic transaction is run speculatively, creating

a transaction log rather than mutating the shared state
directly,

I at the end of the transaction, the system checks if the log
is consistent with the memory and either commits the
transaction or restarts it.

For this to work, it is mandatory that all effects in a transaction
are effects that can be logged!
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Software transactional memory in Haskell

From Control.Concurrent.STM :

atomically :: STM a→ IO a
newTVar :: a→ STM (TVar a)
readTVar :: TVar a→ STM a
writeTVar :: TVar a→ a→ STM ()
. . .

Note:
I a limited set of effectful operations is available in STM ,
I nothing else (e.g. random numbers, file IO) is possible,
I STM can be turned into IO , but not the other way round.

See the stm package on HackageDB.
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Common interfaces

I Many EDSLs in Haskell work on some parameterized type
X a .

I Many EDSLs have similar ways of combining such
computations!

Examples:

(< |>) :: X a→ X a→ X a -- some form of choice
(>>) :: X a→ X b→ X b -- some form of sequence
(>>=) :: X a→ (a→ X b)→ X b -- sequence using result
(<∗>) :: X (a→ b)→ X a→ X b -- some form of application
. . .
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Monads, applicative functors, . . .

In Haskell, we can abstract from the common interfaces and
give them names:
I monads for computations that support sequencing where

the rest of the computation can depend on previous results;
I applicative functors for computations that support

effectful application;
I . . .

EDSLs following established interfaces
are easier to learn and understand!
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Algebraic properties and laws

Being explicit about effects encourages the design of EDSLs
that allow us to reason about small programs locally:
I neutral elements,
I zero elements,
I associative operators,
I commutative operators,
I idempotent operators.

These properties can be stated, type-checked, and often
automatically tested using yet another EDSL – QuickCheck.
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Degree of embedding

Shallow embedding
EDSL constructs are directly represented by their semantics.

Deep embedding
EDSL constructs are represented by their abstract syntax, and
interpreted in a separate stage.

Note:
I These are two extreme points in a spectrum.
I Most EDSLs use something in between (but close to one

end).
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Shallow embedding example: Lenses

From Data.Label.Abstract (fclabels):

data Point ( ) f i o = Point {_get :: f o,
_set :: (i, f) f}

newtype Lens ( ) f a = Lens {unLens :: Point ( ) f a a}



Shallow embedding example: Parsec

From Text.Parsec.Prim (parsec):

newtype ParsecT s u m a = ParsecT
{unParser ::
∀b.
State s u→
(a→ State s u→ ParseError→ m b)→
( ParseError→ m b)→
(a→ State s u→ ParseError→ m b)→
( ParseError→ m b)→
m b
}



Deep embedding example: multisets

Multisets and operations on multisets:

data MSet a where
MSet :: [a]→ MSet a -- embedded list
U :: MSet a→ MSet a→ MSet a -- union
X :: MSet a→ MSet b→ MSet (a,b) -- product

list :: MSet a→ [a]
count :: MSet a→ Int -- efficient due to delayed products

See “Generic Multiset Programming with Discrimination-based Joins and
Symbolic Cartesian Products” by Fritz Henglein and Ken Friis Larsen for
more on this idea.
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Deep embedding example: Accelerate

Excerpts from Data.Array.Accelerate.AST :

data PreOpenAcc acc env a where
PairArrays :: (. . . )⇒ acc env (Array sh1 e1)→

acc env (Array sh2 e2)→
PreOpenAcc acc env (Array sh1 e1,Array sh2 e2)

Acond :: (. . . )⇒ PreExp acc env Bool→
acc env arrs→

PreOpenAcc acc env arrs
Map :: (. . . )⇒ PreFun acc env (e→ e′)→

acc env (Array sh e)→
PreOpenAcc acc env (Array sh e′)

. . .

See accelerate on HackagedDB by Manuel Chakravarty et. al.



Shallow vs. deep

Shallow
I Working directly with the (denotational) semantics is often

very concise and elegant.
I Relatively easy to use all Haskell features (sharing,

recursion).
I Difficult to debug and/or analyze, because we are limited to

a single interpretation.
Deep
I Full control over the AST, many different interpretations

possible.
I Allows on-the-fly runtime optimization and conversion.
I We can visualize and debug the AST.
I Hard(er) to use Haskell’s sharing and recursion.



So what’s the problem with sharing?

Let us consider an extremely simple DSL:

(⊕) :: Expr→ Expr→ Expr
one :: Expr
eval :: Expr→ Int

Shallow implementation:

type Expr = Int
(⊕) = (+)
one = 1
eval = id
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A user-defined abstraction

tree :: Int→ Expr
tree 0 = one
tree n = let shared = tree (n− 1) in shared⊕ shared

With the shallow embedding, this is fine:
I We reuse Haskell’s sharing.
I What we share is just an integer.



Now let us move to a deep embedding

(⊕) :: Expr→ Expr→ Expr
one :: Expr
eval :: Expr→ Int

data Expr = Pl Expr Expr | One
(⊕) = Pl
one = One
eval (Pl e1 e2) = eval e1 + eval e2
eval One = 1

We are no longer tied to one interpretation . . .
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Showing expressions

disp :: Expr→ String
disp (Pl e1 e2) = "("++ disp e1 ++ " + "++ disp e2 ++ ")"
disp One = "1"

Similarly, we could:
I transform the expression,
I optimize the expression,
I generate some code for the expression in another

language,
I . . .
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But now reconsider . . .

tree :: Int→ Expr
tree 0 = one
tree n = let shared = tree (n− 1) in shared⊕ shared

The call disp (tree 3) results in

"(((1 + 1) + (1 + 1)) + ((1 + 1) + (1 + 1)))"

Sharing is destroyed! We don’t want to wait for eval (tree 30) !
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Solving the sharing problem

I We have to integrate sharing explicitly into our
representation.

I This means we have to deal with variables and binding.
I There are several ways to do this.

One particularly attractive approach to capturing sharing is
parametric higher-order abstract syntax (PHOAS).

For more information on PHOAS and sharing see “Parametric Higher Order
Abstract Syntax for Mechanized Semantics” by Adam Chlipala, and
“Functional Programming with Structured Graphs” by Bruno Oliveira and
William Cook.
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Extending the expression datatype

data Expr a = Pl (Expr a) (Expr a) | One
| Var a | Let (Expr a) (a→ Expr a)

Note:
I two new constructors, for variables and for let ,
I a Let takes a shared expression and a function.

Similar to regions, a proper expression should not assume
anything about its variables:

tree :: Int→ Expr a
tree 0 = one
tree n = Let (tree (n− 1)) (λshared→ Var shared⊕ Var shared)
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Extending the evaluator

We have to add (trivial) cases for Let and Var to eval :

eval :: Expr Int→ Int
eval (Var x) = x
eval (Let e f) = eval (f (eval e))

Here, e is shared.



Redefining the printer

disp :: Expr String→ Int→ String
disp (Pl e1 e2) c = "("++ disp e1 c ++ " + "++ disp e2 c ++ ")"
disp One c = "1"
disp (Var x) c = x
disp (Let e f) c = let v = "x"++ show c

in "let "++ v ++ " = "++ disp e (c + 1) ++
" in "++ disp (f v) (c + 1)

Note:
I Sharing really is observable now.
I We decide what to do with shared expressions.



Can we still use Haskell let ?

Yes, but it requires a “hack”:
I We can write a function that observes the internal sharing

of Haskell.
I This is a side effect, so the result type is tagged (in IO ).
I But we can then convert the observed sharing into a

datatype with explicit Let and work with that in a robust
way.

See data-reify on HackageDB by Andy Gill.



Conclusions

I Think of your (business, research, hobby, . . . ) problems
from a language viewpoint.

I Haskell is a great language for implementing (E)DSLs.
I Types help you in various amazing ways.

I Consider designing your own EDSLs!
I Domains for EDSLs are everywhere . . .
I . . . and Haskell makes it (relatively easy) . . .
I . . . and lets you focus on the important things . . .
I . . . such as a clear and easy-to-understand interface.
I You probably want a deep embedding,
I as turning things into data gives you a lot of control,
I but be careful with sharing.
I Learn from the many existing examples!
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Thank you!

Questions?

andres@well-typed.com
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