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Datatypes are great

I Easy to introduce.
I Distinguished from existing types by the compiler.
I Added safety.
I Can use domain-specific names for types and

constructors.
I Quite readable.

.
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Datatypes are not so great

I New datatypes have no associated library.
I Cannot be compared for equality, cannot be (de)serialized,

cannot be traversed, . . .

Fortunately, there is deriving .

.
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Derivable classes

In Haskell 2010:

Eq , Ord , Enum , Bounded , Read , Show

In GHC (in addition to the ones above):

Functor , Traversable , Typeable , Data , Generic

.
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What about other classes?

For many additional classes, we can intuitively derive instances.

But can we also do it in practice?

Options:

I use an external preprocessor,
I use Template Haskell,
I use data-derive,
I or use the GHC Generic support.

.
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GHC Generic support

From the user perspective:

Step 1

Define a new datatype and derive Generic for it.

data MyType a b =
Flag Bool | Combo (a, a) | Other b Int (MyType a a)
deriving Generic

.
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GHC Generic support

From the user perspective:

Step 2

Use a library that makes use of GHC Generic and give an
empty instance declaration for a suitable type class:

import Data.Binary
...

instance (Binary a, Binary b)⇒ Binary (MyType a b)

.
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Analyzing deriving



Equality as an example

class Eq′ a where
eq :: a→ a→ Bool

Let’s define some instances by hand.

.
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Equality on binary trees

data T = L | N T T

instance Eq′ T where
eq L L = True
eq (N x1 y1) (N x2 y2) = eq x1 x2 && eq y1 y2
eq = False

.
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Equality on another type

data Choice = I Int | C Char | B Choice Bool | S Choice

Assuming instances for Int , Char , Bool :

instance Eq′ Choice where
eq (I n1 ) ( I n2 ) = eq n1 n2
eq (C c1 ) (C c2 ) = eq c1 c2
eq (B x1 b1) (B x2 b2) = eq x1 x2 &&

eq b1 b2
eq (S x1 ) (S x2 ) = eq x1 x2
eq = False

.
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What is the pattern?

I How many cases does the function definition have?
I What is on the right hand sides?

I How many clauses are there in the conjunctions on each
right hand side?

Relevant concepts:

I number of constructors in datatype,
I number of fields per constructor,
I recursion leads to recursion,
I other types lead to invocation of equality on those types.

.
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More datatypes

data Tree a = Leaf a | Node (Tree a) (Tree a)

Like before, but with labels in the leaves.

instance Eq′ a⇒ Eq′ (Tree a) where
eq (Leaf n1 ) (Leaf n2 ) = eq n1 n2
eq (Node x1 y1) (Node x2 y2) = eq x1 x2 && eq y1 y2
eq = False

.
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Yet another equality function

This is often called a rose tree:

data Rose a = Fork a [Rose a]

Assuming an instance for lists:

instance Eq′ a⇒ Eq′ (Rose a) where
eq (Fork x1 xs1) (Fork x2 xs2) = eq x1 x2 && eq xs1 xs2

.
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More concepts

I Parameterization of types is reflected by parameterization
of the functions (via constraints on the instances).

I Using parameterized types in other types then works as
expected.

.
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The equality pattern
An informal description

In order to define equality for a datatype:

I introduce a parameter for each parameter of the datatype,
I introduce a case for each constructor of the datatype,
I introduce a final catch-all case returning False ,
I for each of the other cases, compare the constructor fields

pair-wise and combine them using (&&) ,
I for each field, use the appropriate equality instance.

If we can describe it, can we write a program to do it?

.
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Interlude:
type isomorphisms



Isomorphism between types

Two types A and B are called isomorphic if we have functions

f :: A→ B
g :: B→ A

that are mutual inverses, i.e., if

f ◦ g ≡ id
g ◦ f ≡ id

.
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Example
Lists and Snoc-lists are isomorphic

data SnocList a = Lin | SnocList a :> a

listToSnocList :: [a]→ SnocList a
listToSnocList [ ] = Lin
listToSnocList (x : xs) = listToSnocList xs :> x
snocListToList :: SnocList a→ [a]
snocListToList Lin = [ ]
snocListToList (xs :> x ) = x : snocListToList xs

We can (but won’t) prove that these are inverses.

.
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The idea of datatype-generic programming

I Represent a type A as an isomorphic type Rep A .

I If a limited number of type constructors is used to build
Rep A ,

I then functions defined on each of these type constructors
I can be lifted to work on the original type A
I and thus on any representable type.

.
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Choice between constructors

Which type best encodes choice between constructors?

Well, let’s restrict to two constructors first.

Booleans encode choice, but do not provide information what
the choice is about.

data Either a b = Left a | Right b

Choice between three things:

type Either3 a b c = Either a (Either b c)

.
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Combining constructor fields

Which type best encodes combining fields?

Again, let’s just consider two of them.

data (a, b) = (a, b)

Combining three fields:

type Triple a b c = (a, (b, c))

.
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What about constructors without arguments?

We need another type.

Well, how many values does a constructor without argument
encode?

data () = ()

.
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Representing types



Representing types

To keep representation and original types apart, let’s define
isomorphic copies of the types we need:

data U = U
data a :+: b = L a | R b
data a :∗ : b = a :∗ : b

We can now get started:

data Bool = False | True

How do we represent Bool ?

type RepBool = U :+: U

.
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A class for representable types

class Generic a where
type Rep a
from :: a→ Rep a
to :: Rep a→ a

The type Rep is an associated type.

Equivalent to defining Rep separately as a type family:

type family Rep a

.
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Representable Booleans

instance Generic Bool where
type Rep Bool = U :+: U
from False = L U
from True = R U
to (L U) = False
to (R U) = True

.
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Representable lists

instance Generic [a] where
type Rep [a] = U :+: (a :∗ : [a])
from [ ] = L U
from (x : xs) = R (x :∗ : xs)
to (L U ) = [ ]
to (R (x :∗ : xs)) = x : xs

Note:

I shallow transformation,
I no constraint on Generic a required.

.
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Representable trees

instance Generic (Tree a) where
type Rep (Tree a) = a :+: (Tree a :∗ : Tree a)
from (Leaf n ) = L n
from (Node x y ) = R (x :∗ : y)
to (L n ) = Leaf n
to (R (x :∗ : y)) = Node x y

.
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Representable rose trees

instance Generic (Rose a) where
type Rep (Rose a) = a :∗ : [Rose a]
from (Fork x xs) = x :∗ : xs
to (x :∗ : xs ) = Fork x xs

.
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Representing primitive types

We don’t . . .

.
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Back to equality



Intermediate summary

I We have defined class Generic that maps datatypes to
representations built up from U , (:+:) , (:∗ :) and other
datatypes.

I If we can define equality on the representation types, then
we should be able to obtain a generic equality function.

I Let us apply the informal recipe from earlier.

.
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A class for generic equality

class GEq a where
geq :: a→ a→ Bool

.
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Instance for sums

instance (GEq a, GEq b)⇒ GEq (a :+: b) where
geq (L a1) (L a2) = geq a1 a2
geq (R b1) (R b2) = geq b1 b2
geq = False

.
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Instance for products and unit

instance (GEq a, GEq b)⇒ GEq (a :∗ : b) where
geq (a1 :∗ : b1) (a2 :∗ : b2) = geq a1 a2 && geq b1 b2

instance GEq U where
geq U U = True

.
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Instances for primitive types

instance GEq Int where
geq = ((= =) :: Int→ Int→ Bool)

.
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What now?



Dispatching to the representation type

defaultEq :: (Generic a, GEq (Rep a))⇒ a→ a→ Bool
defaultEq x y = geq (from x) (from y)

.
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defaultEq x y = geq (from x) (from y)

Defining generic instances is now trivial:

instance GEq Bool where
geq = defaultEq

instance GEq a⇒ GEq [a] where
geq = defaultEq

instance GEq a⇒ GEq (Tree a) where
geq = defaultEq

instance GEq a⇒ GEq (Rose a) where
geq = defaultEq
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Dispatching to the representation type

defaultEq :: (Generic a, GEq (Rep a))⇒ a→ a→ Bool
defaultEq x y = geq (from x) (from y)

Or with the DefaultSignatures language extension:

class GEq a where
geq :: a→ a→ Bool
default geq :: (Generic a, GEq (Rep a))⇒ a→ a→ Bool
geq = defaultEq

instance GEq Bool
instance GEq a⇒ GEq [a]
instance GEq a⇒ GEq (Tree a)
instance GEq a⇒ GEq (Rose a)

.
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Isn’t this as bad as before?



Amount of work

Question

Haven’t we just replaced some tedious work (defining equality
for a type) by some other tedious work (defining a
representation for a type)?

Yes, but:

I The representation has to be given only once, and works
for potentially many generic functions.

I Since there is a single representation per type, it could be
generated automatically by some other means (compiler
support, TH).

I In other words, it’s sufficient if we can use deriving on

class Generic .

.
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So can we derive Generic ?

Yes (with DeriveGeneric) . . .

. . . but the representations are not quite as simple as we’ve
pretended before:

.
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So can we derive Generic ?

Yes (with DeriveGeneric) . . .

. . . but the representations are not quite as simple as we’ve
pretended before:

class Generic a where
type Rep a :: ∗ → ∗
from :: a→ Rep a x
to :: Rep a x→ a

Representation types are actually of kind ∗ → ∗ .

.
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An extra argument?

I It’s a pragmatic choice.
I Facilitates some things, because we also want to derive

classes parameterized by type constructors (such as
Functor ).

I For now, let’s just try to “ignore” the extra argument.

.
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Simple vs. GHC representation

Old:

type instance Rep (Tree a) = a :+: (Tree a :∗ : Tree a)

New:

type instance Rep (Tree a) =
M1 D D1Tree
(M1 C C1_0Tree

(M1 S NoSelector (K1 P a))
:+:
M1 C C1_1Tree
(M1 S NoSelector (K1 R (Tree a))
:∗ :
M1 S NoSelector (K1 R (Tree a))
)

)

.
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Simple vs. GHC representation

Old:

type instance Rep (Tree a) = a :+: (Tree a :∗ : Tree a)

New:

type instance Rep (Tree a) =

a
:+:

( Tree a
:∗ :

Tree a
)
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Familiar components

Everything is now lifted to kind ∗ → ∗ :

data U1 a = U1
data (f :+: g) a = L1 (f a) | R1 (g a)
data (f :∗ : g) a = f a :∗ : g a

.
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Wrapping constant types

This is an extra type constructor wrapping every constant type:

newtype K1 t c a = K1 {unK1 :: c}
data P -- marks parameters
data R -- marks other occurrences

The first argument t is not used on the right hand side. It is
supposed to be instantiated with either P or R .

.
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Meta information

newtype M1 t i f a = M1 {unM1 :: f a}
data D -- marks datatypes
data C -- marks constructors
data S -- marks (record) selectors

Depending on the tag t , the position i is to be filled with a
datatype belonging to class Datatype , Constructor , or

Selector .

.
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Meta information – contd.

class Datatype d where
datatypeName :: w d f a→ String
moduleName :: w d f a→ String

instance Datatype D1Tree where
datatypeName = "Tree"
moduleName = ...

Similarly for constructors.

.
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Adapting the equality class(es)

Works on representation types:

class GEq′ f where
geq′ :: f a→ f a→ Bool

Works on “normal” types:

class GEq a where
geq :: a→ a→ Bool
default geq :: (Generic a, GEq′ (Rep a))⇒ a→ a→ Bool
geq x y = geq′ (from x) (from y)

Instance for GEq Int and other primitive types as before.

.
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Adapting the equality class(es) – contd.

instance (GEq′ f, GEq′ g)⇒ GEq′ (f :+: g) where
geq′ (L1 x) (L1 y) = geq′ x y
geq′ (R1 x) (R1 y) = geq′ x y
geq′ = False

Similarly for :∗ : and U1 .

An instance for constant types:

instance GEq a⇒ GEq′ (K1 t a) where
geq′ (K1 x) (K1 y) = geq x y

.
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Adapting the equality classes – contd.

For equality, we ignore all meta information:

instance GEq′ f⇒ GEq′ (M1 t i f) where
geq′ (M1 x) (M1 y) = geq′ x y

All meta information is grouped under a single datatype, so that
we can easily ignore it all if we want to.

Functions such as show and read can be implemented
generically by accessing meta information.

.
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Constructor classes

To cover classes such as Functor , Traversable , Foldable
generically, we need a way to map between a type constructor
and its representation:

class Generic1 f where
type Rep1 f :: ∗ → ∗
from1 :: f a→ Rep1 f a
to1 :: Rep1 f a→ f a

Use the same representation type constructors, plus

data Par1 p = Par1 {unPar1 :: p }
data Rec1 f p = Rec1 {unRec1 :: f p}

GHC from version 7.6 is able to derive Generic1 , too.

.
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Conclusions

I For more examples, look at generic-deriving.
I As a user of libraries, less boilerplate, easy to use.
I Safer (but less powerful) than Template Haskell.
I As a library author: consider using this!

.
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Thank you – Questions?



Extra slides



Template Haskell

I Has the full syntax tree. Can do much more.
I You have to do more work to derive using TH.
I It’s trickier to get it right. Corner cases. Name

manipulation.
I Datatype-generic functions are type-checked.
I Uniform interface to the user.
I Admittedly, allowing deriving would be even easier.

.

.Well-Typed



SYB, uniplate, multiplate, regular, multirec

I Similar ideas.
I Need other representations.
I Except for SYB, no direct GHC support.
I But we can convert! (ICFP 2013 submission)

.
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