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Haven’t you ever wondered
how deriving works?



Equality on binary trees

data T = L | N T T

Let’s try ourselves:

eqT :: T→ T→ Bool
eqT L L = True
eqT (N x1 y1) (N x2 y2) = eqT x1 x2 ∧ eqT y1 y2
eqT = False

Easy enough, let’s try another . . .
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Equality on another type

data Choice = I Int | C Char | B Choice Bool | S Choice

eqChoice :: Choice→ Choice→ Bool
eqChoice (I n1 ) ( I n2 ) = eqInt n1 n2
eqChoice (C c1 ) (C c2 ) = eqChar c1 c2
eqChoice (B x1 b1) (B x2 b2) = eqChoice x1 x2 ∧ eqBool b1 b2
eqChoice = False

Do you see a pattern?
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A pattern for defining equality

I How many cases does the function definition have?
I What is on the right hand sides?

I How many clauses are there in the conjunctions on each
right hand side?

Relevant concepts:
I number of constructors in datatype,
I number of fields per constructor,
I recursion leads to recursion,
I other types lead to invocation of equality on those types.
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More datatypes

data Tree a = Leaf a | Node (Tree a) (Tree a)

Like before, but with labels in the leaves.

How to define equality now?

We need equality on a !

eqTree :: (a→ a→ Bool)→ Tree a→ Tree a→ Bool
eqTree eqa (Leaf n1 ) (Leaf n2 ) = eqa n1 n2
eqTree eqa (Node x1 y1) (Node x2 y2) = eqTree eqa x1 x2 ∧

eqTree eqa y1 y2
eqTree eqa = False
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Type classes

Note how the definition of eqTree is perfectly suited for a type
class instance:

instance Eq a⇒ Eq (Tree a) where
(= =) = eqTree (= =)

In fact, type classes are usually implemented as dictionaries,
and an instance declaration is translated into a dictionary
transformer.
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Yet another equality function

This is often called a rose tree:

data Rose a = Fork a [Rose a]

Let’s assume we already have:

eqList :: (a→ a→ Bool)→ [a]→ [a]→ Bool

How to define eqRose ?

eqRose :: (a→ a→ Bool)→ Rose a→ Rose a→ Bool
eqRose eqa (Fork x1 xs1) (Fork x2 xs2) =

eqa x1 x2 ∧ eqList (eqRose eqa) xs1 xs2

No fallback case needed because there is only one constructor.
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More concepts

I Parameterization of types is reflected by parameterization
of the functions.

I Application of parameterized types is reflected by
application of the functions.



The equality pattern
An informal description

In order to define equality for a datatype:
I introduce a parameter for each parameter of the datatype,
I introduce a case for each constructor of the datatype,
I introduce a final catch-all case returning False ,
I for each of the other cases, compare the constructor fields

pair-wise and combine them using (∧) ,
I for each field, use the appropriate equality function;

combine equality functions and use the parameter
functions as needed.

If we can describe it, can we write a program to do it?



The equality pattern
An informal description

In order to define equality for a datatype:
I introduce a parameter for each parameter of the datatype,
I introduce a case for each constructor of the datatype,
I introduce a final catch-all case returning False ,
I for each of the other cases, compare the constructor fields

pair-wise and combine them using (∧) ,
I for each field, use the appropriate equality function;

combine equality functions and use the parameter
functions as needed.

If we can describe it, can we write a program to do it?



Interlude:
type isomorphisms



Isomorphism between types

Two types A and B are called isomorphic if we have
functions

f :: A→ B
g :: B→ A

that are mutual inverses, i.e., if

f ◦ g ≡ id
g ◦ f ≡ id



Example
Lists and Snoc-lists are isomorphic

data SnocList a = Lin | SnocList a :> a

listToSnocList :: [a]→ SnocList a
listToSnocList [ ] = Lin
listToSnocList (x : xs) = listToSnocList xs :> x
snocListToList :: SnocList a→ [a]
snocListToList Lin = [ ]
snocListToList (xs :> x ) = x : snocListToList xs

We can prove that these are inverses.
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The idea of datatype-generic programming

If we can represent a type as an isomorphic type that is
composed out of a limited number of type constructors, then we
can define a function on each of the type constructors and gain
a function that works on the original type – and in fact on any
representable type.

In fact, we do not even quite need an isomorphic type.

For a type A , we need a type B and from :: A→ B and
to :: B→ A such that

to ◦ from ≡ id

We call such a combination an embedding-projection pair.
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Choice between constructors

Which type best encodes choice between constructors?

Well, let’s restrict to two constructors first.

Booleans encode choice, but do not provide information what
the choice is about.

data Either a b = Left a | Right a

Choice between three things:

type Either3 a b c = Either a (Either b c)
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Combining constructor fields

Which type best encodes combining fields?

Again, let’s just consider two of them.

data (a,b) = (a,b)

Combining three fields:

type Triple a b c = (a, (b, c))
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What about constructors without arguments?

We need another type.

Well, how many values does a constructor without argument
encode?

data () = ()
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Representing types

To keep representation and original types apart, let’s define
isomorphic copies of the types we need:

data U = U
data a :+: b = L a | R b
data a :∗ : b = a :∗ : b

We can now get started:

data Bool = False | True

How do we represent Bool ?

type RepBool = U :+: U
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A class for representable types

class Representable a where
type Rep a
from :: a→ Rep a
to :: Rep a→ a

The type Rep is an associated type. GHC allows us to define
datatypes and type synonyms within classes, depending on the
class parameter(s).
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Representable Booleans

instance Representable Bool where
type Rep Bool = U :+: U
from False = L U
from True = R U
to (L U) = False
to (R U) = True

Question

Are Bool and Rep Bool isomorphic?
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Representable lists

instance Representable [a] where
type Rep [a] = U :+: (a :∗ : [a])
from [ ] = L U
from (x : xs) = R (x :∗ : xs)
to (L U ) = [ ]
to (R (x :∗ : xs)) = x : xs

Note that the representation of recursive types mentions the
original types – if needed, we can apply the transformation
multiple times.

Note further that we do not require Representable a .
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Representable trees

instance Representable (Tree a) where
type Rep (Tree a) = a :+: (Tree a :∗ : Tree a)
from (Leaf n ) = L n
from (Node x y ) = R (x :∗ : y)
to (L n ) = Leaf n
to (R (x :∗ : y)) = Node x y



Representable rose trees

instance Representable (Rose a) where
type Rep (Rose a) = a :∗ : [Rose a]
from (Fork x xs) = x :∗ : xs
to (x :∗ : xs ) = Fork x xs



Representing primitive types

For some types, it does not make sense to define a structural
representation – for such types, we will have to define generic
functions directly.

instance Representable Int where
type Rep Int = Int
from = id
to = id



Back to equality



Intermediate summary

I We have defined class Representable that maps

datatypes to representations built up from U , (:+:) ,

(:∗ :) and other datatypes.
I If we can define equality on the representation types, then

we should be able to obtain a generic equality function.
I Let us apply the informal recipe from earlier.



Equality on sums

eqSum :: ( a → a → Bool)→
( b→ b→ Bool)→

a :+: b→ a :+: b→ Bool
eqSum eqa eqb (L a1) (L a2) = eqa a1 a2
eqSum eqa eqb (R a1) (R a2) = eqb a1 a2
eqSum eqa eqb = False



Equality on products

eqProd :: ( a → a → Bool)→
( b→ b→ Bool)→

a :∗ : b→ a :∗ : b→ Bool
eqProd eqa eqb (a1 :∗ : b1) (a2 :∗ : b2) =

eqa a1 a2 ∧ eqb b1 b2



Equality on units

eqUnit :: U→ U→ Bool
eqUnit U U = True



What now?



A class for generic equality

class GEq a where
geq :: a→ a→ Bool

instance (GEq a,GEq b)⇒ GEq (a :+: b) where
geq = eqSum geq geq

instance (GEq a,GEq b)⇒ GEq (a :∗ : b) where
geq = eqProd geq geq

instance GEq U where
geq = eqUnit

Instances for primitive types:

instance GEq Int where
geq = eqInt



A class for generic equality

class GEq a where
geq :: a→ a→ Bool

instance (GEq a,GEq b)⇒ GEq (a :+: b) where
geq = eqSum geq geq

instance (GEq a,GEq b)⇒ GEq (a :∗ : b) where
geq = eqProd geq geq

instance GEq U where
geq = eqUnit

Instances for primitive types:

instance GEq Int where
geq = eqInt



A class for generic equality

class GEq a where
geq :: a→ a→ Bool

instance (GEq a,GEq b)⇒ GEq (a :+: b) where
geq = eqSum geq geq

instance (GEq a,GEq b)⇒ GEq (a :∗ : b) where
geq = eqProd geq geq

instance GEq U where
geq = eqUnit

Instances for primitive types:

instance GEq Int where
geq = eqInt



Dispatching to the representation type

eq :: (Representable a,GEq (Rep a))⇒ a→ a→ Bool
eq x y = geq (from x) (from y)

Defining generic instances is now trivial:

instance GEq Bool where
geq = eq

instance GEq a⇒ GEq [a] where
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instance GEq a⇒ GEq (Tree a) where
geq = eq

instance GEq a⇒ GEq (Rose a) where
geq = eq
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Have we won
or
have we lost?



Amount of work

Question

Haven’t we just replaced some tedious work (defining equality
for a type) by some other tedious work (defining a
representation for a type)?

Yes, but:
I The representation has to be given only once, and works

for potentially many generic functions.
I Since there is a single representation per type, it could be

generated automatically by some other means (compiler
support, TH).
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Other generic functions



Coding and decoding

We want to define

data Bit = O | I
encode :: (Representable a,GEncode (Rep a))⇒ a→ [Bit]
decode :: (Representable a,GDecode (Rep a))⇒ BitParser a
type BitParser a = [Bit]→ Maybe (a, [Bit])

such that encoding and then decoding yields the original value.



What about constructor names?

Seems that the representation we have does not provide
constructor name info.

So let us extend the representation:

data C c a = C a

Note that c does not appear on the right hand side.

But c is supposed to be in this class:

class Constructor c where
conName :: t c a→ String
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Trees with constructors

data TreeLeaf
instance Constructor TreeLeaf where

conName = "Leaf"

data TreeNode
instance Constructor TreeNode where

conName = "Node"

instance Representable (Tree a) where
type Rep (Tree a) = C TreeLeaf a :+:

C TreeNode (Tree a :∗ : Tree a)
from (Leaf n ) = L (C n)
from (Node x y ) = R (C (x :∗ : y))
to (L (C n) ) = Leaf n
to (R (C (x :∗ : y))) = Node x y
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Defining functions on constructors

instance (GShow a,Constructor c)⇒ GShow (C c a) where
gshow c@(C a)
| null args = conName c
| otherwise = "("++ conName c ++ " "++ args ++ ")"

where args = gshow a

instance (GEq a)⇒ GEq (C c a) where
geq (C x) (C y) = geq x y
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A library for generic programming

What we have discussed so far is available on Hackage as a
library called instant-generics.

I Representable instances for most prelude types.

I Template Haskell generation of Representable instances.
I A number of example generic functions.
I Additional markers in the representation to distinguish

positions of type variables from other fields.



Is this the only way?



Many design choices

No!

There are lots of approaches (too many) to generic
programming in Haskell.

I The main question is exactly how we represent the
datatypes – we have already seen what kind of freedom
we have.

I The view dictates which datatypes we can represent easily,
and which generic functions can be defined.
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Other notable approaches
Constructor-based views

The Scrap your boilerplate library takes a very simple view on
values:

C x1 ... xn

Every value in a datatype is a constructor applied to a number
of arguments.

Using SYB, it is easy to define traversals and queries.
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Other notable approaches
Children-based views

The Uniplate library is a simplification of SYB that just shows
how in a recursive structure we can get to the children, and
back from the children to the structure.

uniplate :: Uniplate a⇒ a→ ([a], [a]→ a)

While a bit less powerful than SYB, this is one of the simplest
Generic Programming libraries around, and allows to define the
same kind of traversals and queries as SYB.
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Other notable approaches
Fixed-point views

The regular and multirec libraries work with representations
that abstract from the recursion by means of a fixed-point
combinator, in addition to revealing the sums-of-product
structure

data Fix f = In (f (Fix f))
out (In f) = f

Using a fixed-point view, we can more easily capture functions
that make use of the recursive structure of a type, such as folds
and unfolds (catamorphisms and anamorphisms).
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GHC implementation

An approach that is quite similar to instant-generics has just
been implemented directly in GHC, and will be available in the
upcoming 7.2.1 release together with the Hackage library
generic-deriving.

With this approach, GHC can automatically (without using TH)
generate the representations for you.
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Outlook: dependent types

Dependently typed programming languages such as Agda
allow types to depend on terms. For example,

Vec Int 5

could be a vector of integers of length 5 .

We can also compute types from values, then. So we can
define grammars of types as normal datatypes, and interpret
them as the types they describe.

Makes it easy to play with many different views (universes).
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Other topics

There is more than we can cover in this lecture:
I Looking at all the other GP approaches closely.
I Comparison with template meta-programming.
I Efficiency of generic functions.
I Type-indexed types.
I . . .



Questions?


