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Introduction



What is Cloud Haskell?

» Framework (a number of related packages) for Haskell
» Message-passing distributed concurrency (Erlang, actors)
» Allin libraries; no (specific) compiler support required

B Well-Typed



Features

v

Global view on a distributed program

Single program runs in potentially many places
Processes and nodes are first class entities
Communication via (typed) messages

Functions can be sent

Programmable serialization

Easy to monitor processes (and recover from failure)
(Draft of) formal semantics
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Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.
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Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

Concurrency

threads and locks ( MVar s)

aynchronous computations ( Async s)
software transactional memory
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Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

(Deterministic) Parallelism

v

evaluation strategies
dataflow-based task parallelism
flat and nested data parallelism

v

v
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Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

Distributed Concurrency
» Cloud Haskell

| S
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Freedom of choice

Haskell is great for embedded domain-specific languages.
GHC has a very capable run-time system.

You can pick whatever suits the needs of your task.

All the approaches can be combined!
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Freedom of choice

Haskell is great for embedded domain-specific languages.
GHC has a very capable run-time system.

You can pick whatever suits the needs of your task.

All the approaches can be combined!

v
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v

Lesson

Rather than picking a language based on the model you want,
pick a library based on the problem you have.

B Well-Typed



Cloud Haskell Example

server :: Process ()
server = forever $ do

() + expect

liftlO $ putStrLn "ping”

client :: Processld — Process ()
client serverPid = forever $ do
send serverPid ()
liftlO $ threadDelay (1 x 1076)
main :: 10 ()
main = do
Right t + createTransport "127.0.0.1" "201306"
defaultTCPParameters
node < newlLocalNode tinitRemoteTable
runProcess node $ do
serverPid + getSelfPid
spawnLocal $ client serverPid
server
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Haskell



Pure Functions

dist:: Floatinga=a —~a — a
distxy =sqgrt (x«x +yx*y)
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Pure Functions

dist:: Floatinga=a —~a — a
distxy =sqgrt (x«x +yx*y)

data Tree a = Leaf a | Node (Tree a) (Tree a)

size :: Tree a — Int
size (Leafn) =1
size (Node | r) = size | + size r
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Pure Functions

dist:: Floatinga=a —~a — a
distxy =sqgrt (x«x +yx*y)

data Tree a = Leaf a | Node (Tree a) (Tree a)
size :: Tree a — Int

size (Leafn) =1

size (Node | r) = size | + size r

search :: Eq a = Tree a — a — Bool
search (Leafn) x=n==x
search (Node | r) x = search | x || search r x

B Well-Typed



Type signatures

dist :Floatnga=a—a—a
size :Treea— Int
search :: Eq a = Tree a — a — Bool
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Function calls

dist:: Floatihga=a —a — a

distxy
dist2 3
dist (2 + x) (3 + x)
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conversation :: 10 ()
conversation = do
putStrLn "Who are you?"
name <« getLine
putStrLn $ "Hi " + name + ". Where are you from?”
loc + getLine
putStrLn $
if loc == "Munich”
then "Oh, I love Munich!”
else "Sorry, where is " #loc# "?"
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conversation :: 10 ()
conversation = do
putStrLn "Who are you?"
name <« getLine
putStrLn $ "Hi " + name + ". Where are you from?”
loc + getLine
putStrLn $
if loc == "Munich”
then "Oh, I love Munich!”
else "Sorry, where is " #loc# "?"

readNLines :: Int — 10 [String]
readNLines n = replicateM n getLine
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Maybe a
States a
Random a
Signal a
Par a
10 a
STM a
Process a

-- possibly failing

-- state-maintaining

-- depending on a PRNG
-- time-changing

-- annotated for parallelism
-- arbitrary side effects

-- logged transactions

-- Cloud Haskell processes
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Maybe a
States a
Random a
Signal a
Par a
10 a
STM a
Process a

-- possibly failing

-- state-maintaining

-- depending on a PRNG
-- time-changing

-- annotated for parallelism
-- arbitrary side effects

-- logged transactions

-- Cloud Haskell processes

“Semicolon” is overloaded

You can define your own “monads”. You can decide what the
semantics of sequencing in your application should be.
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Concurrency

forklO :: 10 () — 10 Threadld
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Concurrency

forklO :: 10 () — 10 Threadld

threadDelay :: Int — 10 ()
forever mMonadm=ma—-mb --here: I0a—=10b
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Concurrency

forklO :: 10 () — 10 Threadld

threadDelay :: Int — 10 ()
forever mMonadm=ma—-mb --here: I0a—=10b

printForever :: String — 10 ()

printForever msg = forever $ do
putStrLn msg
threadDelay (1 « 1076)

main :: 1O ()

main = do
forklO $ printForever "child 1"
forklO $ printForever "child 2"
printForever "parent”
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Cloud Haskell



Cloud Haskell example revisited

server :: Process ()
server = forever $ do

() + expect

liftlO $ putStrLn "ping”

client :: Processld — Process ()
client serverPid = forever $ do
send serverPid ()
liftlO $ threadDelay (1 x 1076)
main :: 10 ()
main = do
Right t + createTransport "127.0.0.1" "201306"
defaultTCPParameters
node < newlLocalNode tinitRemoteTable
runProcess node $ do
serverPid + getSelfPid
spawnLocal $ client serverPid
server
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Layered architecture

Over-simplified:

User application
Higher-level libraries
Distributed process core library
Backend (simplelocalnet, Azure, EC2, ...)
Transport (TCP, in-memory, SSH, ZeroMQ, ...)

System libraries
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Nodes, Processes, Communication

-Li*"f
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Nodes, Processes, Communication

» Backend responsible for nodes

» Processes and communication
are backend-agnostic
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Spawning and running processes

spawnLocal :: Process () — Process Processld
spawn :: Nodeld — Closure (Process ())
— Process Processld

For the main process:

runProcess :: LocalNode — Process () — 10 ()
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Sending and receiving messages

Ad-hoc:
send :: Serializable a = Processld — a — Process ()
expect :: Serializable a = Process a

expectTimeout :: Serializable a = Int — Process (Maybe a)

Sending is asynchronous. Receiving blocks.
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Sending and receiving messages

Ad-hoc:
send :: Serializable a = Processld — a — Process ()
expect :: Serializable a = Process a

expectTimeout :: Serializable a = Int — Process (Maybe a)
Sending is asynchronous. Receiving blocks.

Typed channels:
newChan :: Serializable a = Process (SendPort a, ReceivePort a)

sendChan : Serializable a = SendPort a —+ a — Process ()
receiveChan :: Serializable a = ReceivePort a — Process a
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Serializable

Serializable a = (Typeable a, Binary a)
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Serializable

Serializable a = (Typeable a, Binary a)

Typeable a -- has a run-time type representation
Binary a -- has a binary representation
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Static and dynamic typing

Haskell’s typing discipline

Haskell is a statically typed language, but can be dynamically
typed locally, on demand.
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Static and dynamic typing

Haskell’s typing discipline

Haskell is a statically typed language, but can be dynamically
typed locally, on demand.

typeOf :: Typeable a = a — TypeRep
toDyn :: Typeable a = a — Dynamic
fromDynamic :: Typeable a = Dynamic — Maybe a

GHC can “derive” an instance of Typeable for any datatype
automatically.
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Binary representation

encode :: Binary a = a — ByteString
decode :: Binary a = ByteString — a

» Haskell has no built-in serialization.

» Automatic generation of sane Binary instances for many
datatypes possible via datatype-generic or
meta-programming.

» Programmer has control — instances can deviate from
simply serializing the in-memory representation.
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Communication



How to reply

Idea

Messages can include process ids and channel send ports.
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How to reply

Idea

Messages can include process ids and channel send ports.

Old server:

server :: Process ()
server = forever $ do

() < expect

liftlO $ putStrLn "ping”
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How to reply

Idea

Messages can include process ids and channel send ports.

New server:

server :: Process ()

server = forever $ do
+ expect
liftlO $ putStrLn $|"ping " + show clientPid|
[send clientPid ()]
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Adapting the client

Old client:

client :: Processld — Process ()
client serverPid =
forever $ do
send serverPid ()
liftlO $ threadDelay (1 « 10°6)
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Adapting the client

Old client:

client :: Processld — Process ()
client serverPid =

forever $ do

send serverPid ()

liftlO $ threadDelay (1 « 107°6)
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Adapting the client

New client:

client :: Processld — Process ()
client serverPid = do
|clientPid < getSelfPid|
forever $ do
send serverPid|clientPid |
() < expect
liftlO $ putStrLn "pong”
liftlO $ threadDelay (1 x 10°6)
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More about replying

» We can send ids of other processes.
» Forwarding, redirection, broadcasting.
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More about replying

» We can send ids of other processes.
» Forwarding, redirection, broadcasting.

For typed channels:

» We can serialize SendPort .

» But we cannot serialize ReceivePort .
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Conversations

Some rules about exchanging messages:

» only one mailbox per process;

» we can expect a particular type;

» we can receiveWait for specific messages;
» typed channels are separate;

» sane ordering of messages;

» messages may remain undelivered.

B Well-Typed



Going distributed



Distributed ping-pong

No changes to server and client are needed.

Old main :
main :: 1O ()
main = do

Right t < createTransport “"127.0.0.1" "201306"
defaultTCPParameters
node < newlLocalNode t initRemoteTable
runProcess node $ do
serverPid « getSelfPid
spawnLocal $ client serverPid
server
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Distributed ping-pong

No changes to server and client are needed.

New main (using distributed-process-simplelocalnet):

main :: 1O ()
main = do
args « getArgs
let rtbl = remoteTable initRemoteTable

case args of
["master”,port] — do
backend <« initializeBackend "127.0.0.1" port rtbl
startMaster backend master
["slave” ,port] — do
backend <« initializeBackend “127.0.0.1" port rtbl
startSlave backend
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Automatic detection of slaves

startSlave ::Backend — IO () -- does nothing
startMaster :: Backend — ([Nodeld] — Process ()) — 10 ()
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Automatic detection of slaves

startSlave ::Backend — IO () -- does nothing
startMaster :: Backend —([Nodeld] — Process ())|— 10 ()

Master gets node ids of all slaves.
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Spawning functions remotely

master :: [Nodeld] — Process ()
master slaves = do
serverPid « getSelfPid
forM_slaves $
Anid — spawn nid ($(mkClosure ‘client) serverPid)
server
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Spawning functions remotely

master :: [Nodeld] — Process ()
master slaves = do
serverPid « getSelfPid
forM_slaves $
Anid — spawn nid|($(mkClosure ’client) serverPid)|
server

Spawns a function call on a remote node.
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Serializing functions

» “Single program assumption”
» Top-level functions are easy
» (Partially) applied functions are turned into closures
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Serializing functions

v

“Single program assumption”
Top-level functions are easy
(Partially) applied functions are turned into closures

v

v

v

Currently based on a bit of meta-programming.
In the future perhaps using a (small) compiler extension.

v
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Towards Map-Reduce



Distributing actual work

master :: [Input] — [Nodeld] — Process ()
master inputs workers = do
masterPid < getSelfPid
workerPids + forM workers $
Anid — spawn nid ($(mkClosure ‘worker) masterPid)

forM_ (zip inputs (cycle workerPids)) $
A(input, workerPid) — send workerPid input

r + collectResults (length inputs)
liftIO $ print r
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Distributing actual work

master :: [Input] — [Nodeld] — Process ()
master inputs workers = do
masterPid < getSelfPid
workerPids + forM workers $
Anid — spawn nid ($(mkClosure masterPid)

forM_ (zip inputs (cycle workerPids)) $
A(input, workerPid) — send workerPid input

r «+—|collectResults [length inputs)
liftIO $ print r
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workerPids «+ forM workers $
Anid — spawn nid ($(mkClosure ‘worker) masterPid)

worker :: Processld — Process ()
worker serverPid = forever $ do
X < expect -- obtain function input
send serverPid (expensiveFunction x)

The expensiveFunction is “mapped” over all inputs.
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Collecting results

r + collectResults (length inputs)
liftlO $ print r

collectResults :: Int — Process Result
collectResults = go emptyResult
where
go :: Result — Int — Process Result
go 'acc 0 = return acc
go laccn =do
r < expect -- obtain one result
go (combineResults accr) (n — 1)

In go we “reduce” the results.
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Abstraction and variation

» Abstracting from expensiveFunction , emptyResult ,

combineResults (and inputs ) yields a simple
map-reduce function.

» Can easily use other ways to distribute work, for example
work-stealing rather than work-pushing.

» Can use a hierarchy of distribution and reduction
processes.
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Conclusions

Aspects we hardly talked about:

v

User-defined message types

Matching of messages

Embrace failure! (Linking and monitoring)
Combination with other multicore frameworks

v

v

v
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Conclusions

Aspects we hardly talked about:

v

User-defined message types

Matching of messages

Embrace failure! (Linking and monitoring)
Combination with other multicore frameworks

v

v

v

Remember:

v

Cloud Haskell is a library (easy to change, extend, adapt)
Cloud Haskell is ongoing work

All of Haskell plus distributed programming

Watch for exciting new backends and higher-level libraries

v

v

v
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Want to try it?

http://haskell-distributed.github.io/

Mini-tutorial blog series by Duncan Coutts and Edsko de Vries:
http://www.well-typed.com/blog/70
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