Distributed Programming with

Cloud Haskell

Andres L6h

14 June 2013, Big Tech Day 6 — Copyright © 2013 Well-Typed LLP

2 Well-Typed

The Haskell Consultants

Overview

Introduction

Haskell

Cloud Haskell

» Communication
Going distributed
Towards Map-Reduce

v

v

v

v

v

B Well-Typed

Introduction

What is Cloud Haskell?

» Framework (a number of related packages) for Haskell
» Message-passing distributed concurrency (Erlang, actors)
» Allin libraries; no (specific) compiler support required

B Well-Typed

Features

v

Global view on a distributed program

Single program runs in potentially many places
Processes and nodes are first class entities
Communication via (typed) messages

Functions can be sent

Programmable serialization

Easy to monitor processes (and recover from failure)
(Draft of) formal semantics

B Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

B Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

Concurrency

threads and locks (MVar s)

aynchronous computations (Async s)
software transactional memory

v

v

v

B Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

(Deterministic) Parallelism

v

evaluation strategies
dataflow-based task parallelism
flat and nested data parallelism

v

v

B Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

Distributed Concurrency
» Cloud Haskell

| S

B Well-Typed

Freedom of choice

Haskell is great for embedded domain-specific languages.
GHC has a very capable run-time system.

You can pick whatever suits the needs of your task.

All the approaches can be combined!

v

v

v

v

B Well-Typed

Freedom of choice

Haskell is great for embedded domain-specific languages.
GHC has a very capable run-time system.

You can pick whatever suits the needs of your task.

All the approaches can be combined!

v

v

v

v

Lesson

Rather than picking a language based on the model you want,
pick a library based on the problem you have.

B Well-Typed

Cloud Haskell Example

server :: Process ()
server = forever $ do

() + expect

liftlO $ putStrLn "ping”

client :: Processld — Process ()
client serverPid = forever $ do
send serverPid ()
liftlO $ threadDelay (1 x 1076)
main :: 10 ()
main = do
Right t + createTransport "127.0.0.1" "201306"
defaultTCPParameters
node < newlLocalNode tinitRemoteTable
runProcess node $ do
serverPid + getSelfPid
spawnLocal $ client serverPid
server

B Well-Typed

Haskell

Pure Functions

dist:: Floatinga=a —~a — a
distxy =sqgrt (x«x +yx*y)

B Well-Typed

Pure Functions

dist:: Floatinga=a —~a — a
distxy =sqgrt (x«x +yx*y)

data Tree a = Leaf a | Node (Tree a) (Tree a)

size :: Tree a — Int
size (Leafn) =1
size (Node | r) = size | + size r

B Well-Typed

Pure Functions

dist:: Floatinga=a —~a — a
distxy =sqgrt (x«x +yx*y)

data Tree a = Leaf a | Node (Tree a) (Tree a)
size :: Tree a — Int

size (Leafn) =1

size (Node | r) = size | + size r

search :: Eq a = Tree a — a — Bool
search (Leafn) x=n==x
search (Node | r) x = search | x || search r x

B Well-Typed

Type signatures

dist :Floatnga=a—a—a
size :Treea— Int
search :: Eq a = Tree a — a — Bool

B Well-Typed

Function calls

dist:: Floatihga=a —a — a

distxy
dist2 3
dist (2 + x) (3 + x)

B Well-Typed

conversation :: 10 ()
conversation = do
putStrLn "Who are you?"
name <« getLine
putStrLn $ "Hi " + name + ". Where are you from?”
loc + getLine
putStrLn $
if loc == "Munich”
then "Oh, I love Munich!”
else "Sorry, where is " #loc# "?"

B Well-Typed

conversation :: 10 ()
conversation = do
putStrLn "Who are you?"
name <« getLine
putStrLn $ "Hi " + name + ". Where are you from?”
loc + getLine
putStrLn $
if loc == "Munich”
then "Oh, I love Munich!”
else "Sorry, where is " #loc# "?"

readNLines :: Int — 10 [String]
readNLines n = replicateM n getLine

B Well-Typed

Maybe a
States a
Random a
Signal a
Par a
10 a
STM a
Process a

-- possibly failing

-- state-maintaining

-- depending on a PRNG
-- time-changing

-- annotated for parallelism
-- arbitrary side effects

-- logged transactions

-- Cloud Haskell processes

B Well-Typed

Maybe a
States a
Random a
Signal a
Par a
10 a
STM a
Process a

-- possibly failing

-- state-maintaining

-- depending on a PRNG
-- time-changing

-- annotated for parallelism
-- arbitrary side effects

-- logged transactions

-- Cloud Haskell processes

“Semicolon” is overloaded

You can define your own “monads”. You can decide what the
semantics of sequencing in your application should be.

B Well-Typed

Concurrency

forklO :: 10 () — 10 Threadld

B Well-Typed

Concurrency

forklO :: 10 () — 10 Threadld

threadDelay :: Int — 10 ()
forever mMonadm=ma—-mb --here: I0a—=10b

B Well-Typed

Concurrency

forklO :: 10 () — 10 Threadld

threadDelay :: Int — 10 ()
forever mMonadm=ma—-mb --here: I0a—=10b

printForever :: String — 10 ()

printForever msg = forever $ do
putStrLn msg
threadDelay (1 « 1076)

main :: 1O ()

main = do
forklO $ printForever "child 1"
forklO $ printForever "child 2"
printForever "parent”

B Well-Typed

Cloud Haskell

Cloud Haskell example revisited

server :: Process ()
server = forever $ do

() + expect

liftlO $ putStrLn "ping”

client :: Processld — Process ()
client serverPid = forever $ do
send serverPid ()
liftlO $ threadDelay (1 x 1076)
main :: 10 ()
main = do
Right t + createTransport "127.0.0.1" "201306"
defaultTCPParameters
node < newlLocalNode tinitRemoteTable
runProcess node $ do
serverPid + getSelfPid
spawnLocal $ client serverPid
server

B Well-Typed

Layered architecture

Over-simplified:

User application
Higher-level libraries
Distributed process core library
Backend (simplelocalnet, Azure, EC2, ...)
Transport (TCP, in-memory, SSH, ZeroMQ, ...)

System libraries

B Well-Typed

Nodes, Processes, Communication

-Li*"f

B Well-Typed

Nodes, Processes, Communication

» Backend responsible for nodes

» Processes and communication
are backend-agnostic

B Well-Typed

Spawning and running processes

spawnLocal :: Process () — Process Processld
spawn :: Nodeld — Closure (Process ())
— Process Processld

For the main process:

runProcess :: LocalNode — Process () — 10 ()

B Well-Typed

Sending and receiving messages

Ad-hoc:
send :: Serializable a = Processld — a — Process ()
expect :: Serializable a = Process a

expectTimeout :: Serializable a = Int — Process (Maybe a)

Sending is asynchronous. Receiving blocks.

B Well-Typed

Sending and receiving messages

Ad-hoc:
send :: Serializable a = Processld — a — Process ()
expect :: Serializable a = Process a

expectTimeout :: Serializable a = Int — Process (Maybe a)
Sending is asynchronous. Receiving blocks.

Typed channels:
newChan :: Serializable a = Process (SendPort a, ReceivePort a)

sendChan : Serializable a = SendPort a —+ a — Process ()
receiveChan :: Serializable a = ReceivePort a — Process a

B Well-Typed

Serializable

Serializable a = (Typeable a, Binary a)

B Well-Typed

Serializable

Serializable a = (Typeable a, Binary a)

Typeable a -- has a run-time type representation
Binary a -- has a binary representation

B Well-Typed

Static and dynamic typing

Haskell’s typing discipline

Haskell is a statically typed language, but can be dynamically
typed locally, on demand.

B Well-Typed

Static and dynamic typing

Haskell’s typing discipline

Haskell is a statically typed language, but can be dynamically
typed locally, on demand.

typeOf :: Typeable a = a — TypeRep
toDyn :: Typeable a = a — Dynamic
fromDynamic :: Typeable a = Dynamic — Maybe a

GHC can “derive” an instance of Typeable for any datatype
automatically.

B Well-Typed

Binary representation

encode :: Binary a = a — ByteString
decode :: Binary a = ByteString — a

» Haskell has no built-in serialization.

» Automatic generation of sane Binary instances for many
datatypes possible via datatype-generic or
meta-programming.

» Programmer has control — instances can deviate from
simply serializing the in-memory representation.

B Well-Typed

Communication

How to reply

Idea

Messages can include process ids and channel send ports.

B Well-Typed

How to reply

Idea

Messages can include process ids and channel send ports.

Old server:

server :: Process ()
server = forever $ do

() < expect

liftlO $ putStrLn "ping”

B Well-Typed

How to reply

Idea

Messages can include process ids and channel send ports.

New server:

server :: Process ()

server = forever $ do
+ expect
liftlO $ putStrLn $|"ping " + show clientPid|
[send clientPid ()]

B Well-Typed

Adapting the client

Old client:

client :: Processld — Process ()
client serverPid =
forever $ do
send serverPid ()
liftlO $ threadDelay (1 « 10°6)

B Well-Typed

Adapting the client

Old client:

client :: Processld — Process ()
client serverPid =

forever $ do

send serverPid ()

liftlO $ threadDelay (1 « 107°6)

B Well-Typed

Adapting the client

New client:

client :: Processld — Process ()
client serverPid = do
|clientPid < getSelfPid|
forever $ do
send serverPid|clientPid |
() < expect
liftlO $ putStrLn "pong”
liftlO $ threadDelay (1 x 10°6)

B Well-Typed

More about replying

» We can send ids of other processes.
» Forwarding, redirection, broadcasting.

B Well-Typed

More about replying

» We can send ids of other processes.
» Forwarding, redirection, broadcasting.

For typed channels:

» We can serialize SendPort .

» But we cannot serialize ReceivePort .

B Well-Typed

Conversations

Some rules about exchanging messages:

» only one mailbox per process;

» we can expect a particular type;

» we can receiveWait for specific messages;
» typed channels are separate;

» sane ordering of messages;

» messages may remain undelivered.

B Well-Typed

Going distributed

Distributed ping-pong

No changes to server and client are needed.

Old main :
main :: 1O ()
main = do

Right t < createTransport “"127.0.0.1" "201306"
defaultTCPParameters
node < newlLocalNode t initRemoteTable
runProcess node $ do
serverPid « getSelfPid
spawnLocal $ client serverPid
server

B Well-Typed

Distributed ping-pong

No changes to server and client are needed.

New main (using distributed-process-simplelocalnet):

main :: 1O ()
main = do
args « getArgs
let rtbl = remoteTable initRemoteTable

case args of
["master”,port] — do
backend <« initializeBackend "127.0.0.1" port rtbl
startMaster backend master
["slave” ,port] — do
backend <« initializeBackend “127.0.0.1" port rtbl
startSlave backend

B Well-Typed

Automatic detection of slaves

startSlave ::Backend — IO () -- does nothing
startMaster :: Backend — ([Nodeld] — Process ()) — 10 ()

B Well-Typed

Automatic detection of slaves

startSlave ::Backend — IO () -- does nothing
startMaster :: Backend —([Nodeld] — Process ())|— 10 ()

Master gets node ids of all slaves.

B Well-Typed

Spawning functions remotely

master :: [Nodeld] — Process ()
master slaves = do
serverPid « getSelfPid
forM_slaves $
Anid — spawn nid ($(mkClosure ‘client) serverPid)
server

B Well-Typed

Spawning functions remotely

master :: [Nodeld] — Process ()
master slaves = do
serverPid « getSelfPid
forM_slaves $
Anid — spawn nid|($(mkClosure ’client) serverPid)|
server

Spawns a function call on a remote node.

B Well-Typed

Serializing functions

» “Single program assumption”
» Top-level functions are easy
» (Partially) applied functions are turned into closures

B Well-Typed

Serializing functions

v

“Single program assumption”
Top-level functions are easy
(Partially) applied functions are turned into closures

v

v

v

Currently based on a bit of meta-programming.
In the future perhaps using a (small) compiler extension.

v

B Well-Typed

Towards Map-Reduce

Distributing actual work

master :: [Input] — [Nodeld] — Process ()
master inputs workers = do
masterPid < getSelfPid
workerPids + forM workers $
Anid — spawn nid ($(mkClosure ‘worker) masterPid)

forM_ (zip inputs (cycle workerPids)) $
A(input, workerPid) — send workerPid input

r + collectResults (length inputs)
liftIO $ print r

B Well-Typed

Distributing actual work

master :: [Input] — [Nodeld] — Process ()
master inputs workers = do
masterPid < getSelfPid
workerPids + forM workers $
Anid — spawn nid ($(mkClosure masterPid)

forM_ (zip inputs (cycle workerPids)) $
A(input, workerPid) — send workerPid input

r «+—|collectResults [length inputs)
liftIO $ print r

B Well-Typed

workerPids «+ forM workers $
Anid — spawn nid ($(mkClosure ‘worker) masterPid)

worker :: Processld — Process ()
worker serverPid = forever $ do
X < expect -- obtain function input
send serverPid (expensiveFunction x)

The expensiveFunction is “mapped” over all inputs.

B Well-Typed

Collecting results

r + collectResults (length inputs)
liftlO $ print r

collectResults :: Int — Process Result
collectResults = go emptyResult
where
go :: Result — Int — Process Result
go 'acc 0 = return acc
go laccn =do
r < expect -- obtain one result
go (combineResults accr) (n — 1)

In go we “reduce” the results.
B Well-Typed

Abstraction and variation

» Abstracting from expensiveFunction , emptyResult ,

combineResults (and inputs) yields a simple
map-reduce function.

» Can easily use other ways to distribute work, for example
work-stealing rather than work-pushing.

» Can use a hierarchy of distribution and reduction
processes.

B Well-Typed

Conclusions

Aspects we hardly talked about:

v

User-defined message types

Matching of messages

Embrace failure! (Linking and monitoring)
Combination with other multicore frameworks

v

v

v

B Well-Typed

Conclusions

Aspects we hardly talked about:

v

User-defined message types

Matching of messages

Embrace failure! (Linking and monitoring)
Combination with other multicore frameworks

v

v

v

Remember:

v

Cloud Haskell is a library (easy to change, extend, adapt)
Cloud Haskell is ongoing work

All of Haskell plus distributed programming

Watch for exciting new backends and higher-level libraries

v

v

v

B Well-Typed

Want to try it?

http://haskell-distributed.github.io/

Mini-tutorial blog series by Duncan Coutts and Edsko de Vries:
http://www.well-typed.com/blog/70

B Well-Typed

http://haskell-distributed.github.io/
http://www.well-typed.com/blog/70

